ANSWER
![image](https://img.qammunity.org/2020/formulas/mathematics/college/p4ifpyv83xxtroa6bxbpy7f7wrpkczls81.png)
EXPLANATION
The explicit rule for the given geometric sequence is
![a_n = (1)/(2) ( (4)/(3) ) ^(n - 1)](https://img.qammunity.org/2020/formulas/mathematics/college/fyf9ce70ggo0ig7skhdj1rapdkpriqxq68.png)
The first term of the geometric sequence can be obtained by substituting n=1.
![a_1= (1)/(2)((4)/(3) )^(1 - 1)](https://img.qammunity.org/2020/formulas/mathematics/college/bvytjjf72yqyxmimwtzxornils05y35s9d.png)
![a_1= (1)/(2) ( (4)/(3) )^(0)](https://img.qammunity.org/2020/formulas/mathematics/college/h1ng7wabbvuxp8x0lle6nkqzfd7shtka0p.png)
![a_1= (1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/bb8kx8l0yddug1mw6rsvxpknax4wbz11l4.png)
The common ratio is
![(4)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/njuue06kwccysinu3fvpfi1udnx59yqvei.png)
To get the subsequent terms we multiply the previous terms by
![(4)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/njuue06kwccysinu3fvpfi1udnx59yqvei.png)
The recursive rule is therefore,
![image](https://img.qammunity.org/2020/formulas/mathematics/college/p4ifpyv83xxtroa6bxbpy7f7wrpkczls81.png)