116k views
15 votes
The sum of third and seventh terms of an AP is 20 . Find the sum of the first nine ​

User Qwertymk
by
7.3k points

1 Answer

10 votes

Given:

The sum of third and seventh terms of an AP is 20.

To find:

The sum of the first nine ​ terms.

Solution:

We have, the sum of third and seventh terms of an AP is 20.


a_3+a_7=20 ...(i)

nth term of an AP is


a_n=a+(n-1)d

where, a is first term and d is common difference.


a_3=a+(3-1)d


a_3=a+2d ...(ii)


a_7=a+(7-1)d


a_7=a+6d ...(iii)

Using (i), (ii) and (iii), we get


(a+2d)+(a+6d)=20


2a+8d=20 ...(iv)

Now, the sum of first n terms of an AP is


S_n=(n)/(2)[2a+(n-1)d]

Put n=9 to find the sum of first 9 terms of an AP.


S_n=(9)/(2)[2a+(9-1)d]


S_n=(9)/(2)[2a+8d]


S_n=(9)/(2)[20] [Using (iv)]


S_n=(180)/(2)


S_n=90

Therefore, the sum of the first 9 terms is 90.

User SteveCl
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories