Hello!
We have to remember that absolute value functions have the following form:
![f(x)=|x|\left \{ {{x,if}x\geq0 \atop {-x,if}x<0} \right.](https://img.qammunity.org/2020/formulas/mathematics/high-school/m5mfoolzi8ozdq0s04qsoccrdho7g4csli.png)
It means that there is a positive and a negative slope lines,
Let's find the information that we need to graph a absolute value function:
First:
Finding the y-intercept,
![f(0)=2(0)+2=2](https://img.qammunity.org/2020/formulas/mathematics/high-school/veg89kukhw9k7ucs2annhh81cufmvy5loj.png)
So, the y-intercept is (0,2)
Second:
Finding the two lines intercepts,
if x ≥ 0
![y=2*(x)+2=2x+2](https://img.qammunity.org/2020/formulas/mathematics/high-school/8g7dn70kr308it0olp7ci1qrw3r3el68tu.png)
if x< 0
![y=2*(-x)+2=-2x+2](https://img.qammunity.org/2020/formulas/mathematics/high-school/i6g5astzux2151sdenord6xbzhbb6qh3n9.png)
Therefore,
If
, we have that:
![-2x+2=2x+2\\2-2=2x+2x\\0=4x\\x=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/k4sj1iriode53x720au8op3nlvbag3f8to.png)
![f(0)=-2(0)+2=2\\y=2](https://img.qammunity.org/2020/formulas/mathematics/high-school/5ee02xqzm75rab1goc017eigb1lsrq8x33.png)
So, both lines intercepts at (0,2).