Answer:
![\boxed{\pink{\sf\leadsto Value \ of \ x \ is \ 24^(\circ)}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/z35zppu8zhhrn1qz8msv7draiqr71nf94n.png)
![\boxed{\pink{\sf\leadsto Value \ of \ \angle C \ is \ 60^(\circ)}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/m00oljoureas7ec3b2onk123r9in1vbpcd.png)
![\boxed{\pink{\sf\leadsto Value \ of \ \angle D \ is \ 120^(\circ)}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/sm72er0uphsocczw6m729327vkpzxmzusp.png)
Explanation:
A parallelogram is given to us . in which m ∠ B = 5x and m ∠C = 2x + 12 ° . And we need to find x .
Figure :-
![\setlength{\unitlength}{1 cm}\begin{picture}(12,12)\thicklines\put(0,0){\line(1,0){5}} \put(5,0){\line(1,2){2}}\put(7,4){\line( - 1,0){5}}\put(2,4){\line( - 1, - 2){2}}\put(0,-0.4){$\bf A$}\put(5,-0.4){$\bf b$}\put(6.5,4.3){$\bf c$}\put(2,4.3){$\bf d$}\qbezier(4.4,0)( 4.5, 0.8)(5.22,0.54)\put(4,0.4){$\bf 5x$}\put(4.7,3.3){$\bf 2x + 12$}\end{picture}](https://img.qammunity.org/2022/formulas/mathematics/high-school/u8t5rac4cveoaco4swfyk2oedu8xq1pwd6.png)
Q. no. 1 ) Find the value of x.
Here we can clearly see that ∠DCB and ∠ABC are co - interior angles . And we know that the sum of co interior angles is 180° .
![\tt:\implies \angle DCB + \angle ABC = 180^(\circ) \\\\\tt:\implies (2x + 12)^(\circ) + 5x^(\circ)=180^(\circ) \\\\\tt:\implies 7x = (180 - 12 )^(\circ) \\\\\tt:\implies 7x = 168^(\circ) \\\\\tt:\implies x =(168^(\circ))/(7) \\\\\underline{\boxed{\red{\tt\longmapsto x = 24^(\circ)}}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/8t2f33to12vldji7yb4vjlro80hicvumz1.png)
Hence the value of x is 24° .
![\rule{200}2](https://img.qammunity.org/2022/formulas/mathematics/high-school/t1si0hi4vu4o7ue3nfqklc6i2u74g46qwy.png)
Q. no. 2 ) Determine the measure of < C .
Here we can see that <C = 2x + 12 ° . So ,
![\tt:\implies \angle C = 2x + 12^(\circ) \\\\\tt:\implies \angle C = 2* 24^(\circ) + 12^(\circ) \\\\\tt:\implies \angle C = 48^(\circ) + 12^(\circ) \\\\\underline{\boxed{\red{\tt\longmapsto \angle C = 60^(\circ)}}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/fpacbe9zqjolt80s1n133zsqg0s18p7j2m.png)
Hence the value of <C is 60° .
![\rule{200}2](https://img.qammunity.org/2022/formulas/mathematics/high-school/t1si0hi4vu4o7ue3nfqklc6i2u74g46qwy.png)
Q. no. 3 ) Determine the measure of < D .How you determined the answer .
Here we can clearly see that ∠D and ∠C are co - interior angles . And we know that the sum of co interior angles is 180° .
![\tt:\implies \angle C + \angle D = 180^(\circ) \\\\\tt:\implies 60^(\circ) + \angle D = 180^(\circ)\\\\\tt:\implies \angle D = 180^(\circ) - 60^(\circ) \\\\\underline{\boxed{\red{\tt\longmapsto \angle D = 120^(\circ)}}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/l7xcgssw6lxuxa9p9gfx21ijij3bz5nck2.png)
Hence the value of <D is 120° .