68.4k views
0 votes
Use Synthetic Division to Factor the following polynomials completely by given factors or roots and Find all the zeros; When you reach quadratic equation, performance regular factoring or Quadratic Formula.


x^(5) -9x^(3) -x^(2) +9;(x-3),(x-1), as factors and -3 as a root

User Regan
by
8.3k points

1 Answer

2 votes

Answer:

The factors are (x - (1 - i√3)/2) , (x - (1 + i√3)/2) , (x - 3) , (x + 3) , (x - 1)

The zeroes are 1 , 3 , -3 , (1 - i√3)/2 , (1 + i√3)/2

Explanation:


(x^(5)+0-9x^(3) -x^(2)+0+9) ÷ (x - 3) =


(x^(4)-9x^(3)-x^(2)+0+9) ÷ (x - 3) =


x^(4)+3x^(3)+(-x^(2)+0+9) ÷ (x - 3) =


x^(4)+3x^(3)-x+(-3x+9) ÷ (x - 3) =


(x^(4)+3x^(3)-x-3)


(x^(4)+3x^(3)+0-x-3) ÷ (x - 1) =

x³ + (4x³ + 0 - x - 3) ÷ (x - 1) =

x³ + 4x² + (4x² - x - 3) ÷ (x - 1) =

x³ + 4x² + 4x + (3x - 3) ÷ (x - 1) =

x³ + 4x² + 4x + 3

∵ -3 is a root ⇒ (x + 3) is a factor

(x³ + 4x² + 4x + 3) ÷ (x + 3) =

x² + (x² + 4x + 3) ÷ (x + 3) =

x² + x + (x + 3) ÷ (x + 3) =

x² + x + 1 ⇒ use the formula to find the factors of this quadratic

∵ a = 1 , b = 1 and c = 1


x=\frac{-1+\sqrt{(1)^(2)-4(1)(1)} }{2(1)}=(-1+√(-3))/(2)=(-1+i√(3))/(2)


x=(-1-i√(3) )/(2)

∴ The factors are (x - (1 - i√3)/2) , (x - (1 + i√3)/2) , (x - 3) , (x + 3) , (x - 1)

The zeroes:

x - 3 = 0 ⇒ x = 3

x + 3 = 0 ⇒ x = -3

x - 1 = 0 ⇒ x = 1

x - (1 - i√3)/2 = 0 ⇒ x = (1 - i√3)/2

x - (1 + i√3)/2 = 0 ⇒ x = (1 + i√3)/2

The zeroes are 1 , 3 , -3 , (1 - i√3)/2 , (1 + i√3)/2

User Rkyr
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories