15.9k views
4 votes
A triangular lot has sides of 215m, 185m, and 125m. Find the measures of the angles at its corners

User Akhi
by
5.0k points

1 Answer

3 votes

Answer:

The measures of the angles at its corners are
59.1\°,35.4\°,85.5\°

Explanation:

see the attached figure to better understand the problem

step 1

Find the measure of angle A

Applying the law of cosines


185^(2)= 215^(2)+125^(2)-2(215)(125)cos(A)


2(215)(125)cos(A)= 215^(2)+125^(2)-185^(2)


cos(A)= [215^(2)+125^(2)-185^(2)]/(2(215)(125))
cos(A)=0.513953


A=arccos(0.513953)=59.1\°

step 2

Find the measure of angle B

Applying the law of cosines


125^(2)= 215^(2)+185^(2)-2(215)(185)cos(B)


2(215)(185)cos(B)= 215^(2)+185^(2)-125^(2)


cos(B)= [215^(2)+185^(2)-125^(2)]/(2(215)(185))
cos(B)=0.81489


B=arccos(0.81489)=35.4\°

step 3

Find the measure of angle C

Applying the law of cosines


215^(2)= 125^(2)+185^(2)-2(125)(185)cos(C)


2(125)(185)cos(C)= 125^(2)+185^(2)-215^(2)


cos(C)= [125^(2)+185^(2)-215^(2)]/(2(125)(185))
cos(C)=0.0784


C=arccos(0.0784)=85.5\°

A triangular lot has sides of 215m, 185m, and 125m. Find the measures of the angles-example-1
User Seufagner
by
5.1k points