13.7k views
13 votes
Hello! Please help!! I really need this.​

Hello! Please help!! I really need this.​-example-1
User Fatiu
by
8.8k points

1 Answer

7 votes

Answer:

Lets show that:

  • cos x cos 2x cos 4x cos 8x = sin 16x / 16 sinx

Use formula:

  • sin 2x = 2 sin x cos x

Multiply LHS by 2sinx/2sinx:

  • 2sinx cos x cos 2x cos 4x cos 8x / 2 sin x =
  • sin 2x cos 2x cos 4x cos 8x / 2 sin x =
  • 2sin 2x cos 2x cos 4x cos 8x / 4 sin x =
  • sin 4x cos 4x cos 8x / 4 sin x =
  • 2sin 4x cos 4x cos 8x / 8 sin x =
  • sin 8x cos 8x / 8 sin x =
  • 2 sin 8x cos 8x / 16 sin x =
  • sin 16x / 16 sin x

Now, we can easily find that:

  • sin (16*2π/15) = sin (2π/15)

Coming back to the original equation, we get:

  • cos (2π/15) cos (4π/15) cos (8π/15) cos (16π/15) = sin (16*2π/15) / 16 sin (2π/15)
  • cos (2π/15) cos (4π/15) cos (8π/15) cos (16π/15) = 1/16
User Jacopo Tosi
by
9.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories