Answer:
Lets show that:
- cos x cos 2x cos 4x cos 8x = sin 16x / 16 sinx
Use formula:
Multiply LHS by 2sinx/2sinx:
- 2sinx cos x cos 2x cos 4x cos 8x / 2 sin x =
- sin 2x cos 2x cos 4x cos 8x / 2 sin x =
- 2sin 2x cos 2x cos 4x cos 8x / 4 sin x =
- sin 4x cos 4x cos 8x / 4 sin x =
- 2sin 4x cos 4x cos 8x / 8 sin x =
- sin 8x cos 8x / 8 sin x =
- 2 sin 8x cos 8x / 16 sin x =
- sin 16x / 16 sin x
Now, we can easily find that:
- sin (16*2π/15) = sin (2π/15)
Coming back to the original equation, we get:
- cos (2π/15) cos (4π/15) cos (8π/15) cos (16π/15) = sin (16*2π/15) / 16 sin (2π/15)
- cos (2π/15) cos (4π/15) cos (8π/15) cos (16π/15) = 1/16