Given:
In triangle XYZ, x = 27 cm, y = 79 cm and
.
To find:
The length of z.
Solution:
In triangle XYZ, using the Law of cosine, we get
![z^2=x^2+y^2-2xy\cos Z](https://img.qammunity.org/2022/formulas/mathematics/college/dtevyos8r1wdh14w0qod0gx3cobr58vqul.png)
Putting the given values in the above formula, we get
![z^2=(27)^2+(79)^2-2(27)(79)\cos (142^\circ)](https://img.qammunity.org/2022/formulas/mathematics/college/wp61gxpjfbbucskhpfotm5o8sxdj11nh7y.png)
![z^2=729+6241-4266(-0.788)](https://img.qammunity.org/2022/formulas/mathematics/college/rp3ccl0zk5ttz9jm7q21zjdcwgtb7nawfr.png)
![z^2=6970+3361.608](https://img.qammunity.org/2022/formulas/mathematics/college/1dygtn64anfnxnr76mq6yiqxeyfs892jg9.png)
![z^2=10331.608](https://img.qammunity.org/2022/formulas/mathematics/college/sd2mpwlqe1kqpclzjnvyop1yw8r5rn2a8s.png)
Taking square root on both sides.
![z=\pm √(10331.608)](https://img.qammunity.org/2022/formulas/mathematics/college/53ogu8w51hktmawpu58dz1ksp6z635h4s6.png)
![z=\pm 101.6445178](https://img.qammunity.org/2022/formulas/mathematics/college/6i9vefoz6j81f2zcpevkzzpegbkjxu318p.png)
Approx the above value to the nearest number and side length cannot be negative. So,
![z\approx \pm 102\text{ cm}](https://img.qammunity.org/2022/formulas/mathematics/college/2azwxriquspjrz81ar5t0e3t7jyodoffsn.png)
Therefore, the length of z is about 102 cm.