226,518 views
45 votes
45 votes
HELP!!


\sf If \: {x}^(2) + \frac{1}{ {x}^(2) } = 47, \: and \: x > 0, \: then \: what \: is \: value \: of \: x + (1)/(x)

DON'T SPAM.​

User Kittygirl
by
3.0k points

2 Answers

24 votes
24 votes


\qquad \qquad \bf \huge\star \: \: \large{ \underline{Answer} } \huge \: \: \star

  • x + 1/x = 7


\textsf{ \underline{\underline{Steps to solve the problem} }:}


\qquad❖ \: \sf \: {x}^(2) + \cfrac{1}{ {x}^(2) } = 47


\qquad❖ \: \sf \: {x}^(2) + \cfrac{1}{ {x}^(2) } + 2 - 2 = 47

( adding and subtracting 2, doesn't change the value )


\qquad❖ \: \sf \: {x}^(2) + \cfrac{1}{ {x}^(2) } + 2 = 47 + 2


\qquad❖ \: \sf \: {x}^(2) + \cfrac{1}{ {x}^(2) } + \bigg(2 \sdot x \sdot \cfrac{1}{x} \bigg) = 49

( x cancel out, so no change in value )


\qquad❖ \: \sf \: \bigg(x + \cfrac{1}{x} \bigg) {}^(2) = 49

( use identity a² + 2ab + b² = (a + b)² )


\qquad❖ \: \sf \: \bigg(x + \cfrac{1}{x} \bigg) {}^{} = √(49)


\qquad❖ \: \sf \: x + \cfrac{1}{x} {}^{} = \pm7

since we have to take positive value, i.e greater than 0


\qquad❖ \: \sf \: x + \cfrac{1}{x} {}^{} = 7


\qquad \large \sf {Conclusion} :

Therefore, the required value is 7

User Prabhat Gundepalli
by
2.9k points
10 votes
10 votes

Answer:


  • x+\cfrac{1}{x} =7

================

Given:


  • x^2+\cfrac{1}{x^2} =47

Add 2 to both sides of equation:


  • x^2+\cfrac{1}{x^2}+2 =47+2

Then follow the steps:


  • x^2+\cfrac{1}{x^2}+2*x*\cfrac{1}{x} =49

  • (x+\cfrac{1}{x})^2=7^2

Take square root of both sides to get:


  • x+\cfrac{1}{x} =\pm\ 7

We are taking the positive value as we are told x > 0, hence the answer is 7.

User ADyson
by
3.0k points