Answer:
The correct option is 2.
Explanation:
From the given graphs in is clear that
![f(x)=x-3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pskn704pohvj6knz5v81pj1mu2gq0dtguf.png)
![g(x)=-0.5x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gshowihs6vdlb77tts3mknnilg85jnymvy.png)
we need to find the interval for which (f-g)(x) is negative.
![(f-g)(x)=f(x)-g(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/8cuzgwvem8zeohz7vcsv3l0z16dzjgq7gf.png)
Substitute the values of both functions.
![(f-g)(x)=x-3-(-0.5x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/uql8tqiapw7lw11n6qzi37z78y8wpwr7mv.png)
![(f-g)(x)=x-3+0.5x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9p7rgvn0a2sfcysl8f4fy4viezw1owuto7.png)
![(f-g)(x)=1.5x-3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3suyf54rqrnsi24e1sf62cpn7r1voaw1uo.png)
The value of (f-g)(x) is negative mean the value (f-g)(x) is less than 0.
![1.5x-3<0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ko7d3w8k3fpruhixtoupxnryy7gt0phok3.png)
Add 3 on both sides.
![1.5x<3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4f8lr027obbq7eq719pxs5hjl0xv1jj6ev.png)
Divide both sides by 1.5.
![(1.5x)/(1.5)<(3)/(1.5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jkud16n24ntg22uto0cmc2l7a4r5i2p30u.png)
![x<2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wznf0ywv0yuoum4dhqzwn7sixb5zsf1d5z.png)
For all x<2, the value (f-g)(x) is negative. It means for the interval (-∞,2) the value (f-g)(x) is negative.
Therefore the correct option is 2.