It's a value you should probably memorize:
![\cos45^\circ=\frac{\sqrt2}2=\frac1{\sqrt2}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yy0pbrpy17jrfclgs36j1kusem9q2dt9qi.png)
You can derive it using some trigonometric identities, other known values of cosine, and properties of the cosine function. For example, using the double angle identity for cosine:
![\cos^2x=\frac{1+\cos2x}2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ernbl55j4gf6rcx779mretp9yy81h8jdf9.png)
If
, then
![\cos^245^\circ=\frac{1+\cos90^\circ}2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cje73lnqli7h84ugg9qrt8dqqqn6n4prfo.png)
and you probably know that
, so
![\cos^245^\circ=\frac12](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c3cucdnsssyaed81p7mx0exg3rd8snd0zz.png)
When we take the square root, we should take the positive root because
whenever
:
![\cos45^\circ=+√(\frac12)\implies\cos45^\circ=\frac1{\sqrt2}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dazon7dfufilrzkblyemz11g3zjle30us8.png)