Answer:
![(288)/(17)\ un^2.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6hbkbmplykci9lsrmuz349qihb4086i72d.png)
Explanation:
1. The line y=12-4x has the slope -4, then perpendicular line will have slope
![(1)/(4).](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3imt4ctxqsavlrk9qyrsxho4f5x7n41rr5.png)
The equation of this perpendicular line is
![y-0=(1)/(4)(x-0),\\ \\4y=x.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6s0uvep12yfyhyyiug8xprptu0s23p86rk.png)
2. The vertices of the triangle are at points:
A: x=0, y=0.
B: x=0, y=12.
C:
![\left\{\begin{array}{l}y=12-4x\\4y=x\end{array}\right.\Rightarrow y=12-16y,\ y=(12)/(17),\ x=(48)/(17).](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8pzt6jejz2khqnqm8hgcqnb9wg7k95war1.png)
3. The height of the triangle ABC is x-coordinate of point C, so
the base of the triangle is the length of the segment AB, 12 cm.
4. The area of the triangle ABC is
![(1)/(2)\cdot 12\cdot (48)/(17)=(288)/(17)\ un^2.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qjyjvlio65mjiwpjg6ke5hzk7u03250qt5.png)