120k views
4 votes
Help please!!!!!!!!!!!!!!!!!!!!!!!!!

Given ​ f(x)=x2−12x+46​.




Enter the quadratic function in vertex form











What is the axis of symmetry for f(x)=3^2 + 9x + 15?


x = −3/2


x = -2


x = −2/3

User Minigeek
by
4.7k points

1 Answer

2 votes

Answer:


\large\boxed{1.\ f(x)=(x-6)^2+10}\\\\\boxed{2.\ x=-(3)/(2)}

Explanation:

The quadratic function:


f(x)=ax^2+bx+c

1.

The vertex form of a quadratic function:


f(x)=a(x-h)^2+k


h=(-b)/(2a)\\\\k=f(h)

We have


f(x)=x^2-12x+46\\\\a=1,\ b=-12,\ c=46

Substitute:


h=(-(-12))/(2(1))=(12)/(2)=6\\\\k=f(6)=6^2-12(6)+46=36-72+46=10\\\\f(x)=1(x-6)^2+10

2.

The equation of an axis of symmetry:


x=(-b)/(2a)

We have:


f(x)=3x^2+9x+15\\\\a=3,\ b=9,\ c=15

Substitute:


x=(-9)/(2(3))=-(3)/(2)

User Aliaxander
by
4.2k points