Answer:
Quotient is i/3.
Explanation:
Given:
Complex numbers are 3( cos 135° + i sin 135° ) and 9( cos 45° + i sin 45° )
To find: Quotient of the given complex number.
Consider,
![(3(cos\,135+i\:sin\,135))/(9(cos\,45+i\:sin\,45))](https://img.qammunity.org/2020/formulas/mathematics/high-school/qwc41kb1mdenn8joohe1xrfa8xr6virtod.png)
![(3)/(9)*(cos\,135+i\:sin\,135)/(cos\,45+i\:sin\,45)](https://img.qammunity.org/2020/formulas/mathematics/high-school/5bujse3gvdrbjwlmljv21xv0mrnb7l9nxk.png)
![=(1)/(3)*(cos\,135+i\:sin\,135)/(cos\,45+i\:sin\,45)*(cos\,45-i\:sin\,45)/(cos\,45-\:sin\,45))](https://img.qammunity.org/2020/formulas/mathematics/high-school/2pphb07m7emm9shn1xnjoiz4szkiom59ha.png)
![=(1)/(3)*((cos\,135+i\:sin\,135)(cos\,45-i\:sin\,45))/((cos\,45-i\:sin\,45)(cos\,45+\:sin\,45))](https://img.qammunity.org/2020/formulas/mathematics/high-school/1ihk1zmhoosgb1c5kibu3r2qsantcqyvph.png)
![=(1)/(3)*((cos\,135\:cos\,45+sin\,135\:sin\,45+i(sin\,135\:cos\,45-cos\,135\:\:sin\,45))/(cos^2\,45-(i\:sin45)^2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/f8qjef39usi03nwyeesuqm8z6hcgdhm6wa.png)
using, cos A cos B + sin A sin B = cos( A - B ) and sin A cos B - cos A sin B = sin( A - B )
![=(1)/(3)*(cos\,(135-45)+i\:sin\,(135-45))/(cos^2\,45-(-1)sin^2\,45)](https://img.qammunity.org/2020/formulas/mathematics/high-school/bue2mn9ir3czqsbkuytnlvfe7trjl4hyk3.png)
![=(1)/(3)*(cos\,90+i\:sin\,90)/(cos^2\,45+sin^2\,45)](https://img.qammunity.org/2020/formulas/mathematics/high-school/3zjn81w5hx7oatk9rp7h42307reliixshu.png)
![=(1)/(3)*(0+i)/(1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/l50d15wr83dt10ninn6jd0tcsp0fk983xa.png)
![=(i)/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/98crz2r6fcx07q5ftlr0vvf0qaazhz6kfw.png)
Therefore, Quotient is i/3.