USING ELIMINATION METHOD
Let the price of vanilla thickshake = x
Let the price of fruit juice = y
Given that a vanilla thickshake is $2 more than a fruit juice.
so
- x = 2+y ...... (Equation 1)
Given that If 3 vanilla thickshakes and 5 fruit juices cost $30.
- 3x+5y=30 ...... (Equation 2)
So the system of equations
![x = 2+y](https://img.qammunity.org/2022/formulas/mathematics/high-school/l5yok1grcoie7rztvre1lsg7pi1m0v99hk.png)
![3x+5y = 30](https://img.qammunity.org/2022/formulas/mathematics/high-school/ru88kip8b5gkjvnmexsf92cn0ognqdgpkd.png)
Arrange equation variables for elimination
![\begin{bmatrix}x-y=2\\ 3x+5y=30\end{bmatrix}](https://img.qammunity.org/2022/formulas/mathematics/high-school/y0o9j9vevr76x5spooiy5sk3w09jvac31p.png)
![\mathrm{Multiply\:}x-y=2\mathrm{\:by\:}3\:\mathrm{:}\:\quad \:3x-3y=6](https://img.qammunity.org/2022/formulas/mathematics/high-school/ymo1s1ino3xfmg7wgdkbbm7i5keboug7za.png)
![\begin{bmatrix}3x-3y=6\\ 3x+5y=30\end{bmatrix}](https://img.qammunity.org/2022/formulas/mathematics/high-school/rksdz2kf7ylg7hknxi2yfrorv7vujfow9t.png)
so
![3x+5y=30](https://img.qammunity.org/2022/formulas/mathematics/high-school/omeccjhi19mzp5aef0812uimshd8dz8gil.png)
![-](https://img.qammunity.org/2022/formulas/mathematics/high-school/dkd4u8uifx64fw0hosc3qmza7es2o4ew2a.png)
![\underline{3x-3y=6}](https://img.qammunity.org/2022/formulas/mathematics/high-school/xbmip7k1mrwojbh7i49kl27y4ka4lr3p7t.png)
![8y=24](https://img.qammunity.org/2022/formulas/mathematics/high-school/d7ue1y6d3bb4txd2z6iplxqyjmk5mh6qyb.png)
so the system of equations becomes
![\begin{bmatrix}3x-3y=6\\ 8y=24\end{bmatrix}](https://img.qammunity.org/2022/formulas/mathematics/high-school/5grl7317vvb0pg7d6fpdnlnrtoezskgd6v.png)
solve 8y = 24 for y
![8y=24](https://img.qammunity.org/2022/formulas/mathematics/high-school/d7ue1y6d3bb4txd2z6iplxqyjmk5mh6qyb.png)
Divide both sides by 2
![(8y)/(8)=(24)/(8)](https://img.qammunity.org/2022/formulas/mathematics/high-school/jxf7v86p6a0hmwyksu046gx98i2klzvxr7.png)
![y=3](https://img.qammunity.org/2022/formulas/mathematics/high-school/y9iff074w2mzowsy1i3jmibzn7aqz18mb0.png)
![\mathrm{For\:}3x-3y=6\mathrm{\:plug\:in\:}y=3](https://img.qammunity.org/2022/formulas/mathematics/high-school/9wrbj8lkkv8xkc9yxhgiq4bq8zj2a6fs20.png)
![3x-3\cdot \:3=6](https://img.qammunity.org/2022/formulas/mathematics/high-school/fzegvs6sv7y5ykzhnfupg93aoatl17zr72.png)
![3x-9=6](https://img.qammunity.org/2022/formulas/mathematics/high-school/t5kmo4178d1fmd24x2s6aeg4yuhl0dasuy.png)
![3x=15](https://img.qammunity.org/2022/formulas/mathematics/high-school/rf4dzkx71afsvt5t96u9zybl51asl5b6ut.png)
Divide both sides by 3
![(3x)/(3)=(15)/(3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/zh668hav2zzkj94cezecvmv0ieekxceskc.png)
![x=5](https://img.qammunity.org/2022/formulas/mathematics/high-school/vndazmbyqu3wu39zuuyki1lbj4enalp9m1.png)
Therefore,
- The price of fruit juice = y = 3
- The price of vanilla thickshake = x = 5
2ND METHOD
Explanation:
- Let the price of fruit juice = x
As a vanilla thickshake is $2 more than a fruit juice.
- Thus the price of thickshake vanilla = x+2
Given that 3 vanilla thickshakes and 5 fruit juices cost $30.
3(Vanilla thickshakes) + 5(fruit juice) = 30
3(x+2) + 5x = 30
3x+6+5x=30
8x+6=30
8x=30-6
8x=24
x = 3
Thus,
- The price of fruit juice = x = $3
- The price of vanilla thickshake = x+2 = 3+2 = $5