3. First factor
as a difference of cubes:
![\cos^6A-\sin^6A=\underbrace{(\cos^2A-\sin^2A)}_(\cos2A)(\cos^4A+\cos^2A\sin^2A+\sin^4A)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hpgklmgytib96hmcqls1j0w0il5ysznd2n.png)
For the remaining group, apply the double angle identity.
![\cos^2A=\frac{1+\cos2A}2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9b98t6g9utft6uw74r937imghjmi36kf7u.png)
![\sin^2A=\frac{1-\cos2A}2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c59u1ud76gqwr20beso9i68vmd5mgg5zxx.png)
![\implies\begin{cases}\cos^4A=\left(\frac{1+\cos2A}2\right)^2=\frac{1+2\cos2A+\cos^22A}4\\\\\cos^2A\sin^2A=\frac{(1+\cos2A)(1-\cos2A)}4=\frac{1-\cos^22A}4\\\\\sin^4A=\left(\frac{1-\cos2A}2\right)^2=\frac{1-2\cos2A+\cos^22A}4\end{cases}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/19glcw7qyxbaqtwglwffym9919ozgtcptk.png)
![\implies4(\cos^6A-\sin^6A)=\cos2A[(1+2\cos2A+\cos^22A)+(1-\cos^22A)+(1-2\cos2A+\cos^22A)]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/t97c476u2x0t3td1qhcbqxnvt8xoa0d5bu.png)
![=\cos2A(3+\cos^22A)=\cos^32A+3\cos2A](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7mdea53t62g8l3usz70em228t0r1n56wqm.png)
5. seems rather tricky. You might want to post another question for that problem alone...
6. Factorize the left side as a sum of cubes:
![\cos^320^\circ+\sin^310^\circ=(\cos20^\circ+\sin10^\circ)(\cos^220^\circ-\cos20^\circ\sin10^\circ+\sin^210^\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a65p2p5gzl5mbcd9qpbo1yte41uwka1yxc.png)
From here we have to prove that
![\cos^220^\circ-\cos20^\circ\sin10^\circ+\sin^210^\circ=\frac34](https://img.qammunity.org/2020/formulas/mathematics/middle-school/229acdynz8pe10x4oa3a40zycpz0039387.png)
We can write everything in terms of sine:
(double angle identity)
(angle sum identity)
After some simplifying, we're left with showing that
![4\sin^410^\circ-3\sin^210^\circ+\frac12\sin10^\circ=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ooysixfdz7sg9vwuc9jr905mystvowduch.png)
or
![4\sin^310^\circ-3\sin10^\circ+\frac12=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k936wdd1034zwkjv6514c9vs7c4zgolppn.png)
This last equality follows from what you could the triple angle identity for sine,
![\sin3x=3\sin x-4\sin^3x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/neapq74s6crrjk3aupu6joy0egf9ntnocb.png)