138k views
4 votes
Trignometry problem help plz
no 3, 5 and 6​

Trignometry problem help plz no 3, 5 and 6​-example-1
User Wageoghe
by
5.9k points

1 Answer

3 votes

3. First factor
\cos^6A-\sin^6A as a difference of cubes:


\cos^6A-\sin^6A=\underbrace{(\cos^2A-\sin^2A)}_(\cos2A)(\cos^4A+\cos^2A\sin^2A+\sin^4A)

For the remaining group, apply the double angle identity.


\cos^2A=\frac{1+\cos2A}2


\sin^2A=\frac{1-\cos2A}2


\implies\begin{cases}\cos^4A=\left(\frac{1+\cos2A}2\right)^2=\frac{1+2\cos2A+\cos^22A}4\\\\\cos^2A\sin^2A=\frac{(1+\cos2A)(1-\cos2A)}4=\frac{1-\cos^22A}4\\\\\sin^4A=\left(\frac{1-\cos2A}2\right)^2=\frac{1-2\cos2A+\cos^22A}4\end{cases}


\implies4(\cos^6A-\sin^6A)=\cos2A[(1+2\cos2A+\cos^22A)+(1-\cos^22A)+(1-2\cos2A+\cos^22A)]


=\cos2A(3+\cos^22A)=\cos^32A+3\cos2A

5. seems rather tricky. You might want to post another question for that problem alone...

6. Factorize the left side as a sum of cubes:


\cos^320^\circ+\sin^310^\circ=(\cos20^\circ+\sin10^\circ)(\cos^220^\circ-\cos20^\circ\sin10^\circ+\sin^210^\circ)

From here we have to prove that


\cos^220^\circ-\cos20^\circ\sin10^\circ+\sin^210^\circ=\frac34

We can write everything in terms of sine:


\cos^220^\circ=(1-2\sin^210^\circ)^2=1-4\sin^210^\circ+4\sin^410^\circ (double angle identity)


\cos20^\circ\sin10^\circ=\frac{\sin30^\circ-\sin10^\circ}2=\frac14-\frac12\sin10^\circ (angle sum identity)

After some simplifying, we're left with showing that


4\sin^410^\circ-3\sin^210^\circ+\frac12\sin10^\circ=0

or


4\sin^310^\circ-3\sin10^\circ+\frac12=0

This last equality follows from what you could the triple angle identity for sine,


\sin3x=3\sin x-4\sin^3x

User Viktiglemma
by
5.3k points