Answer: a = 47.3;
p = 0.65
Explanation: A power function is of the form
and passes through points (2,5) and (3,81), i.e.:
![5=a.2^(p)](https://img.qammunity.org/2022/formulas/mathematics/college/gq3dildxcavm07eowi5733i0262bkxuwb5.png)
![81=a.3^(p)](https://img.qammunity.org/2022/formulas/mathematics/college/22c41k0aezijq2qd8ueireid8pa4tpo8x0.png)
To determine the two unknows, solve the system of equations:
![log5=log(a.2^(p))](https://img.qammunity.org/2022/formulas/mathematics/college/aeq00mgu4saoziw32qmvth9h2m6vvqq3n7.png)
![log81=log(a.3^(p))](https://img.qammunity.org/2022/formulas/mathematics/college/509a6d81rqri8kyll3aytafi5cbhvclx6l.png)
Using multiplication and power rules:
![log5=loga+plog2](https://img.qammunity.org/2022/formulas/mathematics/college/fqd7cjfk0wf2xqd4qto0b2iced63zznxr4.png)
![log81=loga+plog3](https://img.qammunity.org/2022/formulas/mathematics/college/ybb59rlec4fmoqjqawwuxakbs2hgsnj2qe.png)
Giving values to constants:
0.7=loga+0.3p
2=loga+0.5p
This system of equations can be solved by subtracting each other:
![-1.3=-0.2p](https://img.qammunity.org/2022/formulas/mathematics/college/4ss2yr5bslghjx40jvfs8ec4icswns8b3x.png)
p = 0.65
Substituting p into one of the equations above:
![loga+0.5(0.65)=2](https://img.qammunity.org/2022/formulas/mathematics/college/8dir0a3rsk65fsyeunsrty0f2fi8ykq7ix.png)
![loga=1.675](https://img.qammunity.org/2022/formulas/mathematics/college/idof24vu0qhe43lwsjkenc3s1nd2xm336k.png)
![a=10^(1.675)](https://img.qammunity.org/2022/formulas/mathematics/college/o9ce2z0pcg7srro2b3glj6j6q3rl2eoe23.png)
a = 47.3
The constants a and p of the power function which passes through points (2,5) and (3,81) are 47.3 and 0.65, respectively.