Answer:
Perimeter is 35 units.
Explanation:
A heptagon has 7 equal sides.
Given the length of two consecutive vertices, A(-2-5) and B(1,-9).
We can find the length of AB and multiply by 7.
Recall the distance formula;
![d=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jq23b7gn8a5hqb5oj8gmcxlbivj810cso4.png)
The length of AB is
![|AB|=√((-2-1)^2+(-5--9)^2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/sivzdzxsaotbimi28xe6xwcwwpx6up3vhk.png)
![|AB|=√((-3)^2+(4)^2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/6egjxesuwec1eohh1a4wgknuny5wxjmqv0.png)
![\Rightarrow |AB|=√(9+16)](https://img.qammunity.org/2020/formulas/mathematics/high-school/4pcs37khctw8lrqipuvmbfuesfdz5yyviq.png)
![\Rightarrow |AB|=√(25)](https://img.qammunity.org/2020/formulas/mathematics/high-school/aoxtltodlsiyhxdz3lgl2f8f3yi7vr4i1w.png)
![\Rightarrow |AB|=5\:units](https://img.qammunity.org/2020/formulas/mathematics/high-school/6eqgd7r8s7oz2am2pupnj9dov7hork10ru.png)
Therefore the perimeter is
.