195k views
0 votes
Express the following complex number in trigonometric form: 3 - 3i and find the 4th roots.

User Ulrik
by
4.7k points

1 Answer

3 votes

Answer:


z=3√(2)\left(\cos(7\pi)/(4)+i\sin(7\pi)/(4)\right)


z_1=\sqrt[4]{3√(2)}\left(\cos(7\pi)/(16)+i\sin(7\pi)/(16)\right).


z_2=\sqrt[4]{3√(2)}\left(\cos(15\pi)/(16)+i\sin(15\pi)/(16)\right).


z_3=\sqrt[4]{3√(2)}\left(\cos(23\pi)/(16)+i\sin(23\pi)/(16)\right).


z_4=\sqrt[4]{3√(2)}\left(\cos(31\pi)/(16)+i\sin(31\pi)/(16)\right).

Explanation:

The complex number
z=3-3i has the real part
Re\ z=3 and the imaginary part
Im\ z=-3.

Hence,


|z|=√((Re\ z)^2+(Im\ z)^2)=√(3^2+(-3)^2)=√(9+9)=3√(2),\\ \\\cos \varphi=(Re\ z)/(|z|)=(3)/(3√(2))=(√(2))/(2),\\ \\\sin \varphi=(Im\ z)/(|z|)=(-3)/(3√(2))=-(√(2))/(2).

From the last two equalities,
\varphi =(7\pi)/(4) and the trigonometric form is


z=|z|(\cos\varphi+i\sin\varphi)=3√(2)\left(\cos(7\pi)/(4)+i\sin(7\pi)/(4)\right).

The square roots can be calculated using the formula:


\sqrt[4]{z}=\left\{\sqrt[4]z\left(\cos(\varphi+2\pi k)/(4)+i\sin(\varphi+2\pi k)/(4)\right),\text{ where }k=0,1,2,3\right\}.

At k=0:


z_1=\sqrt[4]{3√(2)}\left(\cos((7\pi)/(4))/(4)+i\sin((7\pi)/(4))/(4)\right)=\sqrt[4]{3√(2)}\left(\cos(7\pi)/(16)+i\sin(7\pi)/(16)\right).

At k=1:


z_2=\sqrt[4]{3√(2)}\left(\cos((7\pi)/(4)+2\pi)/(4)+i\sin((7\pi)/(4)+2\pi)/(4)\right)=\sqrt[4]{3√(2)}\left(\cos(15\pi)/(16)+i\sin(15\pi)/(16)\right).

At k=2:


z_3=\sqrt[4]{3√(2)}\left(\cos((7\pi)/(4)+4\pi)/(4)+i\sin((7\pi)/(4)+4\pi)/(4)\right)=\sqrt[4]{3√(2)}\left(\cos(23\pi)/(16)+i\sin(23\pi)/(16)\right).

At k=3:


z_4=\sqrt[4]{3√(2)}\left(\cos((7\pi)/(4)+6\pi)/(4)+i\sin((7\pi)/(4)+6\pi)/(4)\right)=\sqrt[4]{3√(2)}\left(\cos(31\pi)/(16)+i\sin(31\pi)/(16)\right).

User Ilio Catallo
by
5.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.