195k views
0 votes
Express the following complex number in trigonometric form: 3 - 3i and find the 4th roots.

User Ulrik
by
6.8k points

1 Answer

3 votes

Answer:


z=3√(2)\left(\cos(7\pi)/(4)+i\sin(7\pi)/(4)\right)


z_1=\sqrt[4]{3√(2)}\left(\cos(7\pi)/(16)+i\sin(7\pi)/(16)\right).


z_2=\sqrt[4]{3√(2)}\left(\cos(15\pi)/(16)+i\sin(15\pi)/(16)\right).


z_3=\sqrt[4]{3√(2)}\left(\cos(23\pi)/(16)+i\sin(23\pi)/(16)\right).


z_4=\sqrt[4]{3√(2)}\left(\cos(31\pi)/(16)+i\sin(31\pi)/(16)\right).

Explanation:

The complex number
z=3-3i has the real part
Re\ z=3 and the imaginary part
Im\ z=-3.

Hence,


|z|=√((Re\ z)^2+(Im\ z)^2)=√(3^2+(-3)^2)=√(9+9)=3√(2),\\ \\\cos \varphi=(Re\ z)/(|z|)=(3)/(3√(2))=(√(2))/(2),\\ \\\sin \varphi=(Im\ z)/(|z|)=(-3)/(3√(2))=-(√(2))/(2).

From the last two equalities,
\varphi =(7\pi)/(4) and the trigonometric form is


z=|z|(\cos\varphi+i\sin\varphi)=3√(2)\left(\cos(7\pi)/(4)+i\sin(7\pi)/(4)\right).

The square roots can be calculated using the formula:


\sqrt[4]{z}=\left\{\sqrt[4]z\left(\cos(\varphi+2\pi k)/(4)+i\sin(\varphi+2\pi k)/(4)\right),\text{ where }k=0,1,2,3\right\}.

At k=0:


z_1=\sqrt[4]{3√(2)}\left(\cos((7\pi)/(4))/(4)+i\sin((7\pi)/(4))/(4)\right)=\sqrt[4]{3√(2)}\left(\cos(7\pi)/(16)+i\sin(7\pi)/(16)\right).

At k=1:


z_2=\sqrt[4]{3√(2)}\left(\cos((7\pi)/(4)+2\pi)/(4)+i\sin((7\pi)/(4)+2\pi)/(4)\right)=\sqrt[4]{3√(2)}\left(\cos(15\pi)/(16)+i\sin(15\pi)/(16)\right).

At k=2:


z_3=\sqrt[4]{3√(2)}\left(\cos((7\pi)/(4)+4\pi)/(4)+i\sin((7\pi)/(4)+4\pi)/(4)\right)=\sqrt[4]{3√(2)}\left(\cos(23\pi)/(16)+i\sin(23\pi)/(16)\right).

At k=3:


z_4=\sqrt[4]{3√(2)}\left(\cos((7\pi)/(4)+6\pi)/(4)+i\sin((7\pi)/(4)+6\pi)/(4)\right)=\sqrt[4]{3√(2)}\left(\cos(31\pi)/(16)+i\sin(31\pi)/(16)\right).

User Ilio Catallo
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories