104k views
4 votes
What is the final temperature when a 3.0 kg gold bar at 99 0C is dropped into 0.22 kg of water at 25oC?

User Smash
by
5.8k points

2 Answers

6 votes

Answer:


T_(f)=46.9C

Step-by-step explanation:

Given:


m_(g) =3.0kg
m_(w) =0.22kg


T_(g)=99 C
T_(w)=25C


c_(p,g)=129J/kg.C
c_(p,w)=4186J/kg.C

Unkown:


T_f=?

Formula:


T_f=(m_g.c_(p,g).T_g+m_w.c_(p,w).T_w)/(m_w.c_(p,w)+m_g.c_(p,g))

Step by step solution:


T_f=((3)(129)(99)+(0.22)(4186)(25))/((0.22)(4186)+(3)(129))


T_f=(61336)/(1308)


T_f=46.9C

User Peacepassion
by
5.2k points
0 votes

Answer:

46.9 C

Step-by-step explanation:

The heat released by the gold bar is equal to the heat absorbed by the water:


m_g C_g (T_g-T_f)=m_w C_w (T_f-T_w)

where:


m_g = 3.0 kg is the mass of the gold bar


C_g=129 J/kg C is the specific heat of gold


T_g=99 C is the initial temperature of the gold bar


m_w = 0.22 kg is the mass of the water


C_w=4186 J/kg C is the specific heat of water


T_w=25 C is the initial temperature of the water


T_f is the final temperature of both gold and water at equilibrium

We can re-arrange the formula and solve for T_f, so we find:


m_g C_g T_g -m_g C_g T_f = m_w C_w T_f - m_w C_w T_w\\m_g C_g T_g +m_w C_w T_w= m_w C_w T_f +m_g C_g T_f \\T_f=(m_g C_g T_g +m_w C_w T_w)/(m_w C_w + m_g C_g)=\\=((3.0)(129)(99)+(0.22)(4186)(25))/((0.22)(4186)+(3.0)(129))=(38313+23023)/(921+387)=(61336)/(1308)=46.9 C

User Ligaya
by
5.8k points