128k views
4 votes
What is the nth term rule of the quadratic sequence below? 4 , 6 , 10 , 16 , 24 , 34 , 46

2 Answers

7 votes

Answer:

what he said

Explanation:

the guy above me is correct

User Deadghost
by
8.9k points
7 votes

Answer:


\large\boxed{a_n=n^2-n+4}

Explanation:


a_1=4,\ a_2=6,\ a_3=10,\ a_4=16,\ a_5=24,\ a_6=34,\ a_7=46\\\\a_n=an^2+bn+c\\\\for\ n=1\to 4=a(1^2)+b(1)+c\to a+c+b=4\\\\for\ n=2\to 6=a(2^2)+b(2)+c\to4a+2b+c=6\\\\for\ n=3\to3=a(3^2)+b(3)+c\to 9a+3b+c=10\\\\\text{We have the system of equations:}\\\\\left\{\begin{array}{ccc}a+b+c=4&(1)\\4a+2b+c=6&(2)\\9a+3b+c=10&(3)\end{array}\right\\\\a+b+c=4\qquad\text{subtract b and c from both sides}\\a=4-b-c\qquad\text{substitute to (2) and (3)}


(2)\\4(4-b-c)+2b+c=6\qquad\text{use the distributive property}\\(4)(4)+(4)(-b)+(4)(-c)+2b+c=6\\16-4b-4c+2b+c=6\qquad\text{subtract 16 from both sides}\\(-4b+2b)+(-4c+c)=-10\\-2b-3c=-10\\\\(3)\\9(4-b-c)+3b+c=10\qquad\text{use the distributive property}\\(9)(4)+(9)(-b)+(9)(-c)+3b+c=10\\36-9b-9c+3b+c=10\qquad\text{subtract 36 from both sides}\\(-9b+3b)+(-9c+c)=-26\\-6b-8c=-26


\text{Therefore we have the system of equations:}\\\left\{\begin{array}{ccc}-2b-3c=-10&\text{multiply both sides by (-3)}\\-6b-8c=-26\end{array}\right\\\underline{+\left\{\begin{array}{ccc}6b+9c=30\\-6b-8c=-26\end{array}\right}\qquad\text{add both sides of the equations}\\.\qquad\qquad\boxed{c=4}\\\\\text{Put the value of c to the first equation:}\\\\6b+9(4)=30\\6b+36=30\qquad\text{subtract 36 from both sides}\\6b=-6\qquad\text{divide both sides by 6}\\\boxed{b=-1}\\\\\text{Put the values of b and c to (1)}


a=4-(-1)-4\\a=4+1-4\\\boxed{a=1}\\\\\text{Therefore we have the formula of nth term:}\\\\a_n=1n^2-1n+4

User Astreltsov
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories