Answer:
(D) 16
Explanation:
It is given that Segment EA is an altitude of triangle DEF. Point D(-2,1), E(2,5), F(6,1) and A(2,1).
Now, using the distance formula, we have
![DF=√((1-1)^2+(6+2)^2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/1d4gtytkq1q8qjq5l6lk7pl6mxbq26x24d.png)
![DF=√(64)](https://img.qammunity.org/2020/formulas/mathematics/high-school/283x8k62o75bpdjvyr2e9orvaei7pwh9kg.png)
And
![EA=√((1-5)^2+(2-2)^2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/phvb5uz2rm2vooki4isfcz7k5l11o5ezoe.png)
![EA=√(16)](https://img.qammunity.org/2020/formulas/mathematics/high-school/scf01gs3sndjow4k5zy7i957n4rpbwe2ex.png)
![EA=4 units](https://img.qammunity.org/2020/formulas/mathematics/high-school/mayudobjxzy15lira7oev1jcb4jxhk0k7b.png)
Thus, the area of the triangle is=
![(1)/(2){*}DF{*}SA](https://img.qammunity.org/2020/formulas/mathematics/high-school/pec5tmtb3knp1b56g0ye2mx6agwceeotdq.png)
=
![(1)/(2){*}8{*}4](https://img.qammunity.org/2020/formulas/mathematics/high-school/jr963ga8p6zweapbve91p0bv5528x83squ.png)
=
![16 sq units](https://img.qammunity.org/2020/formulas/mathematics/high-school/dhjsffqi4dasah6u5qmb2a3ttgyxyxlav8.png)
Thus, the area of the triangle is 16 sq units.