Answer:
AC = 6√3 in
Explanation:
Finding the length of the chord:
Join OC. Now ΔAOC is an isosceles triangle as OA = OC =radius.
∠A = ∠C = 30.
∠A + ∠C + ∠AOC = 180 {angle sum property of traingle}
30 + 30 + ∠AOC = 180°
∠AOC = 180 -60
∠AOC = Ф = 120°
Find the length of radius using the bellow formula.
![\sf \boxed{\bf Arc \ length = (\theta)/(180)\pi r}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8dasmxrki3w2dc8q0twisvau2t30k69b5v.png)
Ф = 120°
Arc length = 4π
![\sf 4\pi =(120)/(180)*\pi *r\\\\ r =(4\pi * 180)/(120*\pi )\\\\ r = 6 \ in](https://img.qammunity.org/2023/formulas/mathematics/high-school/xyl7njrjamgkadftmb22jkfc8yrupgx858.png)
![\sf \boxed{\bf chord \ length = 2rSin \ (\theta)/(2)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/pi9l60yhl0jg25lsh1t84ldx9smknrkk5t.png)
![\sf b = 2*6*Sin \ (120)/(2)\\\\ b = 2 *6 * Sin \ 60^\circ\\\\ b = 2 * 6 * (√(3))/(2)\\\\ \b = 6√(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/9o9i7dpaw6oszd4dpzya46j5irusgb8rlq.png)
![\sf \boxed{\bf AC = 6√(3) \ in}](https://img.qammunity.org/2023/formulas/mathematics/high-school/py6vhj23frgra9y4wktb35nqqhg4tkerao.png)