89.5k views
3 votes
Find the sum of the first 70 terms of the sequence

–6, –3, 0, 3, 6, ...


a. 6824

c. 6826

b. 6825

d. 6827


Please select the best answer from the choices provided


A
B
C
D

User Logioniz
by
5.8k points

2 Answers

4 votes

Answer:

b.

6825

Explanation:

User Kirushikesh
by
5.8k points
3 votes

Answer:

Option (b) is correct.

The sum of the first 70 terms of the sequence –6, –3, 0, 3, 6, ... is 6825.

Explanation:

Consider the given sequence, –6, –3, 0, 3, 6, ...

We have to find the sum of the first 70 terms of the sequence –6, –3, 0, 3, 6, ...

Here,
a_1=-6,a_2=-3,a_3=0 and so on.

First find the difference between the terms,


a_2-a_1=-3+6=3


a_3-a_2=0+3=3

Since, the difference between the terms is constant,Hence, the given sequence is an Arithmetic sequence.

For a given A.P. with n terms having a as first term and d be the common difference the sum
S_n is given by,


S_n=(n)/(2)(2a+(n-1)d)

Here, a = -6 , n = 70 , d = 3 ,

Substitute , we get,


S_(70)=(70)/(2)(2(-6)+(70-1)3)


S_(70)=(70)/(2)(2(-6)+(69)3)


S_(70)=(70)/(2)(-12+207)


S_(70)=(70)/(2)(195)


S_(70)=35 * 195


S_(70)=6825

Thus, the sum of the first 70 terms of the sequence –6, –3, 0, 3, 6, ... is 6825.

Option (b) is correct.

User Raffaeu
by
6.1k points