Answer:
Option (b) is correct.
b)
![\cos (\alpha-\beta)=\cos\alpha\cdot\cos\beta+\sin\alpha\cdot\sin\beta](https://img.qammunity.org/2020/formulas/mathematics/high-school/28hqi83ozr0u9kolj39fpnuvqm1mi67dl4.png)
Explanation:
Given
![\cos (180^(\circ)-\phi)=-\cos \phi](https://img.qammunity.org/2020/formulas/mathematics/high-school/ochega0jfhkx286mscalxj5dfjqqa8z2m1.png)
To prove the above stated formula we have to choose one of the identity from the given options .
Since right side of above formula is
which is same as
, we will use the identity
![\cos (\alpha-\beta)](https://img.qammunity.org/2020/formulas/mathematics/high-school/t8wewmqyzzv6sk322grr94y4orrdqp4ojz.png)
![\cos (\alpha-\beta)=\cos\alpha\cdot\cos\beta+\sin\alpha\cdot\sin\beta](https://img.qammunity.org/2020/formulas/mathematics/high-school/28hqi83ozr0u9kolj39fpnuvqm1mi67dl4.png)
![\cos (180^(\circ)-\phi)=\cos 180^(\circ)\cdot\cos\phi+\sin 180^(\circ)\cdot\sin\phi](https://img.qammunity.org/2020/formulas/mathematics/high-school/fd5icofnvj9al8c0dpsrlof8hiizi7f8z4.png)
We know
and
Substitute above, we get,
![\cos (180^(\circ)-\phi)=-\cos \phi](https://img.qammunity.org/2020/formulas/mathematics/high-school/ochega0jfhkx286mscalxj5dfjqqa8z2m1.png)
Thus, Option (b) is correct.