19.1k views
1 vote
Which sum or difference identity would you use to verify that cos (180° - ∅) = -cos ∅?

a.
sin (α -β) = sin α cos β – cos α sin β
b.
cos (α -β) = cos α cos β – sin α sin β
c.
cos (α -β) = cos α cos β + sin α sin β
d.
sin (α + β) = sin α cos β + cos α sin β

User Grill
by
5.9k points

2 Answers

0 votes

Answer:

Option (b) is correct.

b)
\cos (\alpha-\beta)=\cos\alpha\cdot\cos\beta+\sin\alpha\cdot\sin\beta

Explanation:

Given
\cos (180^(\circ)-\phi)=-\cos \phi

To prove the above stated formula we have to choose one of the identity from the given options .

Since right side of above formula is
180^(\circ)-\phi which is same as
\cos (\alpha-\beta), we will use the identity
\cos (\alpha-\beta)


\cos (\alpha-\beta)=\cos\alpha\cdot\cos\beta+\sin\alpha\cdot\sin\beta


\cos (180^(\circ)-\phi)=\cos 180^(\circ)\cdot\cos\phi+\sin 180^(\circ)\cdot\sin\phi

We know
\cos 180^(\circ)=-1 and
\sin 180^(\circ)=0

Substitute above, we get,


\cos (180^(\circ)-\phi)=-\cos \phi

Thus, Option (b) is correct.

User Egwspiti
by
5.7k points
2 votes

Answer: Option C is correct


Explanation:

We know tha tCos(A-B) = cosA cosB + sinAsinB

Plugging A = 180 and B = Ф

cos(180-Ф)= cos180cosФ+sin180sinФ

= (-1) cosФ+ (0) sinФ [ since cos180=-1 and sin180 =0]

= -cosФ + 0

= -cosФ

Therefore option C is the correct answer.

User Aradhna
by
5.6k points