218k views
5 votes
How to solve for a, b and f

How to solve for a, b and f-example-1

1 Answer

4 votes

Answer:


\large\boxed{a=4\sqrt5,\ b=8\sqrt5,\ f=8}

Explanation:

ΔBDC and ΔCDA are similar (AA). Therefore the sides are in proportion:


(BD)/(DC)=(DC)/(DA)

We have:

BD = 4, DA = 16 and DC = f. Substitute:


(4)/(f)=(f)/(16) cross multiply


f^2=(4)(16)\\\\f^2=64\to f=√(64)\\\\\boxed{f=8}

We can use the Pythagorean theorem:


leg^2+leg^2=hypotenuse^2

ΔBDC:

leg = 4, leg = 8, hypotenuse = a. Substitute:


a^2=4^2+8^2\\\\a^2=16+64\\\\a^2=80\to a=√(80)\\\\a=√(16\cdot5)\\\\a=√(16)\cdot\sqrt5\\\\\boxed{a=4\sqrt5}

ΔCDA:

leg = 8, leg = 16, hypotenuse = b. Substitute:


b^2=8^2+16^2\\\\b^2=64+256\\\\b^2=320\to b=√(320)\\\\b=√(16\cdot4\cdot5)\\\\b=√(16)\cdot\sqrt4\cdot\sqrt5\\\\b=4\cdot2\cdot\sqrt5\\\\\boxed{b=8\sqrt5}

User Sz Ppeter
by
6.0k points