Answer:
24
Explanation:
We are given the logarithmic expression:
![\displaystyle{\log_a \left((x^3y)/(z^4)\right)}](https://img.qammunity.org/2023/formulas/mathematics/college/1ap0x46f7bhtwtwa8rh14in8gb48rqe6xr.png)
We are also given by the problem that:
![\displaystyle{\log_a x = 3, \ \log_a y = 7, \ \log_a z = -2}](https://img.qammunity.org/2023/formulas/mathematics/college/qnid4upx8tsnu81rccphexpwm2w5epectb.png)
From the expression, we will simplify it using two properties:
![\displaystyle{\log_a MN = \log_a M + \log_a N}\\\\\displaystyle{\log_a (M)/(N) = \log_a M - \log_a N}](https://img.qammunity.org/2023/formulas/mathematics/college/eyzc3ps3k46nfe8j3gl4jpks344ecc2da7.png)
Therefore, apply the properties to simplify:
![\displaystyle{\log_a x^3y - \log_a z^4}\\\\\displaystyle{\log_a x^3 + \log_a y - \log_a z^4}](https://img.qammunity.org/2023/formulas/mathematics/college/fvhcea5h1fs09b70vrbfzm9gfv336oxwky.png)
Next, we will use another property to take an exponent as a coefficient:
![\displaystyle{\log_a x^n = n\log_a x}](https://img.qammunity.org/2023/formulas/mathematics/college/z5gi3elettc96hcfca7zz2cr9rqyct3pkn.png)
Hence:
![\displaystyle{3\log_a x + \log_a y - 4\log_a z}](https://img.qammunity.org/2023/formulas/mathematics/college/o4hm5jnkaoacobpxqll1ttxk5rka3t333p.png)
Substitute what are given in the problem and the answer will be:
![\displaystyle{3(3)+7-4(-2)}\\\\\displaystyle{9+7+8 = 24}](https://img.qammunity.org/2023/formulas/mathematics/college/a4uutwgtzu36ifhmypvtjoffvd0k7yrdu1.png)
Hence, the answer is 24.