Answer:
a.
![-2x\sqrt[3]{x}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jvef05qd9r377gwhjwhlsg6htg9a9yglj9.png)
b.
![(1)/(2^x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/o6y5gb4ayy4gpycv2cqz9o1defweh5u4py.png)
Explanation:
a.
Original equation:
![((-x)^4)/(4x)*\frac{8(-x)^(-3)}{x^{-(4)/(3)}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/i0mmoj63wg117aonee5wj0y1lkpivxdhc1.png)
So (-x)^4 can be seen as (-x * -x) * (-x * -x), which becomes x^2 * x^2 = x^4, the negatives cancel out of the degree is even. So it becomes:
![(x^4)/(4x)*\frac{8(-x)^(-3)}{x^{-(4)/(3)}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/a0ijdduuwp3icd9yb50vgu8jfkpl3e03wr.png)
Cancel out one of the x's on the left fraction:
![(x^3)/(4)*\frac{8(-x)^(-3)}{x^{-(4)/(3)}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/b9e41wd8piic10pz0xe7n7qc6ju6ne9d1m.png)
Rewrite the exponent in the numerator:
![a^(-x) = (1)/(a^x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/18q41lp8p1gd246sj7j2d3r831gve70j90.png)
![(x^3)/(4)*\frac{8*(1)/(-x^3)}{x^{-(4)/(3)}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/nkyxmz5n7w1hffezemtjqjnla6rvskaf8h.png)
Simplify the numerator:
![(x^3)/(4)*\frac{(8)/(-x^3)}{x^{-(4)/(3)}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/58twg2iqakrfyu0zzny3lqgv6fq8vb8j2c.png)
Keep numerator, change division to multiplication, flip the denominator:
![(x^3)/(4)*(8)/(-x^3) * \frac{1}{x^{-(4)/(3)}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/nf1ppdg0oz1v42it5qhkwglaboctnso8c1.png)
multiply the denominator using the exponent identity:
![x^a*x^b=x^(a+b)](https://img.qammunity.org/2023/formulas/mathematics/high-school/5zxqyfbxk0ihophj9377iwg3wjd33utqty.png)
![(x^3)/(4)*\frac{8}{-x^{(5)/(3)}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/o1mjw3mk6rl653d2cnnbagwf9xvdp3kn1n.png)
Multiply the numerators and denominators:
![\frac{8x^3}{-4x^{(5)/(3)}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/nqz0bol465rax9vo398ypw2qr4c5h1edgq.png)
Use the fact that:
to divide the x^3 and x^(5/3) and divide the 4 by the -8
![-2x^{(4)/(3)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/d6vi18fnhkb5mjjsu2cb5zp18sfb3j3wdb.png)
Rewrite the exponent using the exponent identity:
![x^{(a)/(b)} = \sqrt[b]{x^a}=\sqrt[b]{x}^a](https://img.qammunity.org/2023/formulas/mathematics/high-school/lub1ggimhkjioedg9mxfmj4jaag2349yxq.png)
![-2\sqrt[3]{x^4}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8mga2pik06bp4vqvdnn4eilwuu3ug177up.png)
Rewrite as two radicals:
![\sqrt[n]{a} * \sqrt[n]{b} = \sqrt[n]{ab}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mr1y7bherwumg99mnb4447cwr2mpmzz5z1.png)
![-2\sqrt[3]{x^3} * \sqrt[3]{x}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ygp90ql6hhuo1h6brjygfu4odriqet5p27.png)
Simplify:
![-2x\sqrt[3]{x}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jvef05qd9r377gwhjwhlsg6htg9a9yglj9.png)
b.
![2^(2x)/4^(3x)*64^{(x)/(2)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/95qq0amaq7gu8jukoza5pjd73izkti0d7f.png)
Rewrite the 4 as 2^2
![2^(2x)/(2^2)^(3x)*64^{(x)/(2)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/6jknr6xyv924hcem2wzjktv5jmoicm3fad.png)
Use the exponent identity:
![(x^a)^b=x^(ab)](https://img.qammunity.org/2023/formulas/mathematics/high-school/lp512j39ggc2879al4lsuxrlw8v8u6twx0.png)
![2^(2x)/2^(6x)}*64^{(x)/(2)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/520v3acc8attesn1q4ni6hgrk5p249f8xc.png)
Use the exponent identity:
![(x^a)/(x^b)=x^(a-b)](https://img.qammunity.org/2023/formulas/mathematics/high-school/i6wi5qkmc6t0n7ajbz9c6unz8m4r2suoof.png)
![2^(2x-6x) = 2^(-4x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/dpk5gb5jjn87gu3vhgkjaekk0pldk7jecz.png)
Rewrite this part using the definition of a negative exponent:
.
![(1)/(2^(4x)) * 64^{(x)/(2)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/vvj5y5kwrjl0yony117u4gspygyv9nbfir.png)
Multiply:
![\frac{64^{(x)/(2)}}{2^(4x)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/z8n3raxdc5wsceeb17m4x7j0cr265hhnl5.png)
rewrite 64 as 2^6
![\frac{(2^6)^{(x)/(2)}}{2^(4x)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/f1y83xw20ilciod27eiwb2v6vcy2f2q7p3.png)
Use the identity:
![(x^a)^b=x^(ab)](https://img.qammunity.org/2023/formulas/mathematics/high-school/lp512j39ggc2879al4lsuxrlw8v8u6twx0.png)
![(2^(3x))/(2^(4x))](https://img.qammunity.org/2023/formulas/mathematics/high-school/w1uralhcsg9hbojtzyidzpjv1jo4291mub.png)
Use the identity:
![(x^a)/(x^b)=x^(a-b)](https://img.qammunity.org/2023/formulas/mathematics/high-school/i6wi5qkmc6t0n7ajbz9c6unz8m4r2suoof.png)
![2^(-x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/8sqr4l3tnpxloidzkorcanj6l2svdsm14c.png)
rewrite using the definition of a negative exponent:
![((a)/(b))^(-x) = (b)/(a^x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/6ufp6901u3vfuy3t2ap6wuk595nk0mfjyw.png)
![(1)/(2^x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/o6y5gb4ayy4gpycv2cqz9o1defweh5u4py.png)