82.3k views
20 votes
Simplify the following:
A.
(-x)^4/4x * 8(-x)^-3/x^-3/4

Simplify the following: A. (-x)^4/4x * 8(-x)^-3/x^-3/4-example-1
User Justdvl
by
8.5k points

2 Answers

14 votes

Answer:

Answer for (a) -2x^4/3

Answer for (b) 2^5x/4^3x

User Lilith
by
8.1k points
8 votes

Answer:

a.
-2x\sqrt[3]{x}

b.
(1)/(2^x)

Explanation:

a.

Original equation:


((-x)^4)/(4x)*\frac{8(-x)^(-3)}{x^{-(4)/(3)}}

So (-x)^4 can be seen as (-x * -x) * (-x * -x), which becomes x^2 * x^2 = x^4, the negatives cancel out of the degree is even. So it becomes:


(x^4)/(4x)*\frac{8(-x)^(-3)}{x^{-(4)/(3)}}

Cancel out one of the x's on the left fraction:


(x^3)/(4)*\frac{8(-x)^(-3)}{x^{-(4)/(3)}}

Rewrite the exponent in the numerator:
a^(-x) = (1)/(a^x)


(x^3)/(4)*\frac{8*(1)/(-x^3)}{x^{-(4)/(3)}}

Simplify the numerator:


(x^3)/(4)*\frac{(8)/(-x^3)}{x^{-(4)/(3)}}

Keep numerator, change division to multiplication, flip the denominator:


(x^3)/(4)*(8)/(-x^3) * \frac{1}{x^{-(4)/(3)}}

multiply the denominator using the exponent identity:
x^a*x^b=x^(a+b)


(x^3)/(4)*\frac{8}{-x^{(5)/(3)}}

Multiply the numerators and denominators:


\frac{8x^3}{-4x^{(5)/(3)}}

Use the fact that:
(x^a)/(x^b)=x^(a-b) to divide the x^3 and x^(5/3) and divide the 4 by the -8


-2x^{(4)/(3)}

Rewrite the exponent using the exponent identity:
x^{(a)/(b)} = \sqrt[b]{x^a}=\sqrt[b]{x}^a


-2\sqrt[3]{x^4}

Rewrite as two radicals:
\sqrt[n]{a} * \sqrt[n]{b} = \sqrt[n]{ab}


-2\sqrt[3]{x^3} * \sqrt[3]{x}

Simplify:


-2x\sqrt[3]{x}

b.


2^(2x)/4^(3x)*64^{(x)/(2)}

Rewrite the 4 as 2^2


2^(2x)/(2^2)^(3x)*64^{(x)/(2)}

Use the exponent identity:
(x^a)^b=x^(ab)


2^(2x)/2^(6x)}*64^{(x)/(2)}

Use the exponent identity:
(x^a)/(x^b)=x^(a-b)


2^(2x-6x) = 2^(-4x)

Rewrite this part using the definition of a negative exponent:
((a)/(b))^(-x) = (b)/(a^x).


(1)/(2^(4x)) * 64^{(x)/(2)}

Multiply:


\frac{64^{(x)/(2)}}{2^(4x)}

rewrite 64 as 2^6


\frac{(2^6)^{(x)/(2)}}{2^(4x)}

Use the identity:
(x^a)^b=x^(ab)


(2^(3x))/(2^(4x))

Use the identity:
(x^a)/(x^b)=x^(a-b)


2^(-x)

rewrite using the definition of a negative exponent:
((a)/(b))^(-x) = (b)/(a^x)


(1)/(2^x)

User Rwols
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories