82.3k views
20 votes
Simplify the following:
A.
(-x)^4/4x * 8(-x)^-3/x^-3/4

Simplify the following: A. (-x)^4/4x * 8(-x)^-3/x^-3/4-example-1
User Justdvl
by
4.6k points

2 Answers

14 votes

Answer:

Answer for (a) -2x^4/3

Answer for (b) 2^5x/4^3x

User Lilith
by
4.9k points
8 votes

Answer:

a.
-2x\sqrt[3]{x}

b.
(1)/(2^x)

Explanation:

a.

Original equation:


((-x)^4)/(4x)*\frac{8(-x)^(-3)}{x^{-(4)/(3)}}

So (-x)^4 can be seen as (-x * -x) * (-x * -x), which becomes x^2 * x^2 = x^4, the negatives cancel out of the degree is even. So it becomes:


(x^4)/(4x)*\frac{8(-x)^(-3)}{x^{-(4)/(3)}}

Cancel out one of the x's on the left fraction:


(x^3)/(4)*\frac{8(-x)^(-3)}{x^{-(4)/(3)}}

Rewrite the exponent in the numerator:
a^(-x) = (1)/(a^x)


(x^3)/(4)*\frac{8*(1)/(-x^3)}{x^{-(4)/(3)}}

Simplify the numerator:


(x^3)/(4)*\frac{(8)/(-x^3)}{x^{-(4)/(3)}}

Keep numerator, change division to multiplication, flip the denominator:


(x^3)/(4)*(8)/(-x^3) * \frac{1}{x^{-(4)/(3)}}

multiply the denominator using the exponent identity:
x^a*x^b=x^(a+b)


(x^3)/(4)*\frac{8}{-x^{(5)/(3)}}

Multiply the numerators and denominators:


\frac{8x^3}{-4x^{(5)/(3)}}

Use the fact that:
(x^a)/(x^b)=x^(a-b) to divide the x^3 and x^(5/3) and divide the 4 by the -8


-2x^{(4)/(3)}

Rewrite the exponent using the exponent identity:
x^{(a)/(b)} = \sqrt[b]{x^a}=\sqrt[b]{x}^a


-2\sqrt[3]{x^4}

Rewrite as two radicals:
\sqrt[n]{a} * \sqrt[n]{b} = \sqrt[n]{ab}


-2\sqrt[3]{x^3} * \sqrt[3]{x}

Simplify:


-2x\sqrt[3]{x}

b.


2^(2x)/4^(3x)*64^{(x)/(2)}

Rewrite the 4 as 2^2


2^(2x)/(2^2)^(3x)*64^{(x)/(2)}

Use the exponent identity:
(x^a)^b=x^(ab)


2^(2x)/2^(6x)}*64^{(x)/(2)}

Use the exponent identity:
(x^a)/(x^b)=x^(a-b)


2^(2x-6x) = 2^(-4x)

Rewrite this part using the definition of a negative exponent:
((a)/(b))^(-x) = (b)/(a^x).


(1)/(2^(4x)) * 64^{(x)/(2)}

Multiply:


\frac{64^{(x)/(2)}}{2^(4x)}

rewrite 64 as 2^6


\frac{(2^6)^{(x)/(2)}}{2^(4x)}

Use the identity:
(x^a)^b=x^(ab)


(2^(3x))/(2^(4x))

Use the identity:
(x^a)/(x^b)=x^(a-b)


2^(-x)

rewrite using the definition of a negative exponent:
((a)/(b))^(-x) = (b)/(a^x)


(1)/(2^x)

User Rwols
by
5.4k points