To solve this problem we use kinematics formulas.
to. What was the acceleration of the rocket during the first 16-s?
![v_1 = v_o + a_1t_1](https://img.qammunity.org/2020/formulas/physics/college/e1gk02mqm7lpbf9txow73uw5agq4gf8zs7.png)
Where
= speed after 16 s
= initial velocity = 0
= acceleration during 16 s
![v_1 = v_0 + a_1t_1](https://img.qammunity.org/2020/formulas/physics/college/u6fm3xk2nq8p7n5hbostte1wykwi8pzi4a.png)
![v_1 = 0 + 16a_1](https://img.qammunity.org/2020/formulas/physics/college/th2mvc4wg8802xl5y2mivr6u2mtz3pn0op.png)
![v_1 = 16a_1](https://img.qammunity.org/2020/formulas/physics/college/1jk36xm23uvkfk6w9gz1wrmhg2xzebj9f2.png)
Now we use the formula for the position:
![h_1 = h_0 + v_0t_1 + 0.5a_1t_1 ^ 2](https://img.qammunity.org/2020/formulas/physics/college/u71n7ssink8tmvbk7fqfnw0py5p0yjrslu.png)
Where:
= position after 16 s
= initial position = 0
= 16 s
![h_1 = 0 + 0 + 0.5a_1(16)^2](https://img.qammunity.org/2020/formulas/physics/college/k6is4zkjveysghyae6oyjzz5qcg52n2y3q.png)
![h_1 = 128a_1](https://img.qammunity.org/2020/formulas/physics/college/s42ao3o4as2caxzct4kiq93c6t4h1fto73.png)
Then, we know that the altitude of the rocket after 20 s is 5100 meters.
Then we will raise the equation of the position of the rocket from the instant
to
![t_2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3kveqcgcq3nd09jqgk3sv0v0lyagfmcla2.png)
![t = t_2 - t_1\\t = 20 - 16\\t = 4\ s](https://img.qammunity.org/2020/formulas/physics/college/cew96ckux00oggdzeq1wolh66g99u4dyco.png)
where:
![h_2 = h_1 + v_1t - 0.5gt^2](https://img.qammunity.org/2020/formulas/physics/college/w2m4rk1ghft4bsla2eikbg24y1r0b8jhb3.png)
![h_2 = 128a_1 + 16a_1t - 0.5(9.8)t^2](https://img.qammunity.org/2020/formulas/physics/college/sf5gv8j7usgv301we952vrvf0iscsuqdzl.png)
![5100 = 128a_1 + 16a_1(4) -0.5(9.8)(4)^2](https://img.qammunity.org/2020/formulas/physics/college/8ef4h4uzakpzb6jl6yf4k7cqoni2syssh7.png)
Now we clear
.
![5100 +78.4 = a_1(128 + 64)](https://img.qammunity.org/2020/formulas/physics/college/y2eq8mcfiefzp0cq2jp2d5jtjmxrp9md7c.png)
![a_1 = 26.97 m/s^2](https://img.qammunity.org/2020/formulas/physics/college/2fl9cy9blqjxyvlhg7ad1yj9kq9637qdtu.png)
The aceleration is
![26.97 m/s^2](https://img.qammunity.org/2020/formulas/physics/college/aykwzusk7io9bhpfqxayw5e335yb86hn3p.png)
So:
![v_1 = a_1t\\\\v_1 = 16(26.97)\\\\v_1 = 431.52 m/s](https://img.qammunity.org/2020/formulas/physics/college/4o7680r9z1d5xzwn33bt3pd14ktdnz1tpw.png)
What is the speed of the rocket when it passes through a cloud at 5100 m above the ground?
![v_2 = v_1 - gt\\\\v_2 = 431.52 - 9.8(4)\\\\v_2 = 392.32 m/s](https://img.qammunity.org/2020/formulas/physics/college/bheh46h1gmge9omrkrkk5ked79vfgureu5.png)
The speed is 392.32 m/s