45.0k views
4 votes
Add, subtract, multiply, or divide as indicated. List any restrictions for the variable(s) and simplify the answers when possible.

1) x-2 / x+5 + 3x / 2x-1

2) x+6 / x-6 - x^2 / x+6

3) x+9 / x-4 + x+2 / x^2-11x+28

4) x / x^2-64 + 11 / 2x^2+11x-40

5) 5 / x + 11 / x-3 - x-4 / x^2+2x-15

Add, subtract, multiply, or divide as indicated. List any restrictions for the variable-example-1
User Amirfl
by
7.6k points

1 Answer

6 votes
QUESTION 6

We want to simplify;


(x - 2)/(x + 5) + (3x)/(2x - 1)

We collect LCM to get,




= ((x - 2)(2x - 1) + 3x(x + 5))/((x + 5)(2x - 1))




Expand the numerator to get;


= \frac{2 {x}^(2) - x - 4x + 2+ 3 {x}^(2) + 15x}{(x + 5)(2x - 1)}



= \frac{2 {x}^(2) +3 {x}^(2)- x - 4x +15x + 2 }{(x + 5)(2x - 1)}



= \frac{5{x}^(2) + 10x + 2 }{(x + 5)(2x - 1)}


QUESTION 7


The given expression is

(x + 6)/(x - 6) - \frac{ {x}^(2) }{x + 6}



= \frac{(x + 6)(x - 6) - {x}^(2)(x - 6) }{(x - 6)(x + 6)}


Expand the bracket to obtain,


= \frac{{x}^(2) - 36 - {x}^(3) + 6 {x}^(2) }{(x - 6)(x + 6)}

This simplifies to


= \frac{ - {x}^(3) + 7{x}^(2) - 36 }{(x - 6)(x + 6)}


QUESTION 8


We want to simplify


(x + 9)/(x - 4) + \frac{x + 2}{ {x}^(2) - 11x + 28 }

Let us factor the denominator of the fraction first.




= (x + 9)/(x - 4) + \frac{x + 2}{ {x}^(2) - 7x - 4x+ 28 }





= (x + 9)/(x - 4) + (x + 2)/( x(x - 7) - 4(x - 7))




= (x + 9)/(x - 4) + (x + 2)/( (x - 7)(x- 4))



We collect LCM to obtain;



= ((x + 9)(x - 7) + (x + 2))/( (x - 7)(x- 4)) .


We expand brackets to get;


= \frac{ {x}^(2) - 7x + 9x - 63+ x + 2}{ (x - 7)(x- 4)} .


= \frac{ {x}^(2) + 3x - 61}{ (x - 7)(x- 4)} .



QUESTION 9

The given expression is


\frac{x}{ {x}^(2) - 64} + \frac{11}{2 {x}^(2) + 11x - 40}




We factor the numerator of the second fraction to get,



\frac{x}{ {x}^(2) - {8}^(2) } + \frac{11}{2 {x}^(2) + 16x - 5x- 40}




= \frac{x}{ {x}^(2) - {8}^(2) } + (11)/(2 x(x + 8) - 5(x + 8))


This implies that,


= (x)/( (x - 8)( x + 8)) + (11)/((2 x - 5)(x + 8)) .


We collect LCM to get,


= (x(2x - 5) + 11(x - 8))/((2 x - 5)(x + 8)(x - 8))



= \frac{2 {x}^(2) - 5x + 11x - 88}{(2 x - 5)(x + 8)(x - 8)}



= \frac{2 {x}^(2) + 6x - 88}{(2 x - 5)(x + 8)(x - 8)}

QUESTION 10

The given expression is


(5)/(x) + (11)/(x - 3) - \frac{x - 4}{ {x}^(2) + 2x - 15}


We factor the denominator to obtain:




(5)/(x) + (11)/(x - 3) - (x - 4)/( (x - 3)(x + 5))


We collect LCM to get;


(5(x - 3)(x + 5) + 11x(x + 5) - x(x - 4))/( x(x - 3)(x + 5))

We expand brackets to get,



\frac{5 {x}^(2) + 10x - 75 + 11 {x}^(2) + 55x- {x}^(2) + 4x}{ x(x - 3)(x + 5)}



\frac{15 {x}^(2) + 69x - 75 }{ x(x - 3)(x + 5)}

User Siddstuff
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories