145k views
0 votes
Solve for the variable x

Solve for the variable x-example-1

2 Answers

1 vote

Hello there!

Question:-


(x-2)/3 \: = \: (x+1)/4

We need to find the value of x.

Solution:-


\sf \longmapsto \: (x - 2)/(3) = (x + 2)/(4)

Firstly, use Cross Multiplication:-


\sf \longmapsto \: (x - 2)*(4)=(x+1)*(3)

On Simplification:-


\sf \longmapsto \: 4x - 8 = (x + 1)*3


\sf \longmapsto \: 4x - 8 = 3x + 3

Subtract 3x from both sides :-


\sf \longmapsto \: 4x - 8 - 3x=3x+3 - 3x

This equation may be rewritten as :-


\sf \longmapsto4x - 3x - 8 = 3x - 3x + 3

On Simplification:-


\sf \longmapsto \: x - 8 = 0x + 3


\sf \longmapsto \: x - 8 = 3

Add 8 to both sides:-


\sf \longmapsto \: x - 8 + 8 = 3 + 8

As (-)and (+) equals to (-),


\sf \longmapsto \: x - 0 = 11


\: \sf \longmapsto \: x = 11

______________________________________

Henceforth, the value of x is :-


\boxed{\huge\tt x = 11}

______________________________________

Please let me know if you have any questions.

~MisterBrian

User Sagar Adhikari
by
7.8k points
3 votes

Given fractional expression:


{\sf \longmapsto (x-2)/(3) = (x+1)/(4)}

Cross multiply the numbers.


{\sf \longmapsto 4 (x-2) = 3 (x +1)}

Multiply the number outside the bracket with the numbers in the bracket.


{\sf \longmapsto 4x - 8 = 3x +3}

Shift all variables on LHS and constants on RHS.


{\sf \longmapsto 4x - 3x = 3+8}

Subtract the values on LHS and Add the values on RHS.


{\sf \longmapsto 7x = (11)}

Shift the number 7 from LHS to RHS.


{\sf \longmapsto x = (11)/(7)}


\underline{\boxed{\bf So, \: the \: value \: of \: x \: is \: (11)/(7).}}

Verification :


{\sf \longmapsto (x-2)/(3) = (x+1)/(4)}

Substitute the value of the x.


{\sf \longmapsto ((11)/(7)-2)/(3)= ((11)/(7)+1)/(4)}


{\sf \longmapsto ((11-14)/(7))/(3) = ((11+7)/(7))/(4)}


{\sf \longmapsto ((-3)/(7))/(3)= ((18)/(7))/(4)}

Cancel the number 7 on numerator Of LHS and RHS.


{\sf \longmapsto (-3)/(3) = (18)/(4)}

Write the fraction in lowest form by cancellation method.


{\sf \longmapsto (-3)/(3) = (9)/(2)}

So,


{\sf \longmapsto LHS ≠ RHS}

User Fareya
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories