145k views
0 votes
Solve for the variable x

Solve for the variable x-example-1

2 Answers

1 vote

Hello there!

Question:-


(x-2)/3 \: = \: (x+1)/4

We need to find the value of x.

Solution:-


\sf \longmapsto \: (x - 2)/(3) = (x + 2)/(4)

Firstly, use Cross Multiplication:-


\sf \longmapsto \: (x - 2)*(4)=(x+1)*(3)

On Simplification:-


\sf \longmapsto \: 4x - 8 = (x + 1)*3


\sf \longmapsto \: 4x - 8 = 3x + 3

Subtract 3x from both sides :-


\sf \longmapsto \: 4x - 8 - 3x=3x+3 - 3x

This equation may be rewritten as :-


\sf \longmapsto4x - 3x - 8 = 3x - 3x + 3

On Simplification:-


\sf \longmapsto \: x - 8 = 0x + 3


\sf \longmapsto \: x - 8 = 3

Add 8 to both sides:-


\sf \longmapsto \: x - 8 + 8 = 3 + 8

As (-)and (+) equals to (-),


\sf \longmapsto \: x - 0 = 11


\: \sf \longmapsto \: x = 11

______________________________________

Henceforth, the value of x is :-


\boxed{\huge\tt x = 11}

______________________________________

Please let me know if you have any questions.

~MisterBrian

User Sagar Adhikari
by
4.3k points
3 votes

Given fractional expression:


{\sf \longmapsto (x-2)/(3) = (x+1)/(4)}

Cross multiply the numbers.


{\sf \longmapsto 4 (x-2) = 3 (x +1)}

Multiply the number outside the bracket with the numbers in the bracket.


{\sf \longmapsto 4x - 8 = 3x +3}

Shift all variables on LHS and constants on RHS.


{\sf \longmapsto 4x - 3x = 3+8}

Subtract the values on LHS and Add the values on RHS.


{\sf \longmapsto 7x = (11)}

Shift the number 7 from LHS to RHS.


{\sf \longmapsto x = (11)/(7)}


\underline{\boxed{\bf So, \: the \: value \: of \: x \: is \: (11)/(7).}}

Verification :


{\sf \longmapsto (x-2)/(3) = (x+1)/(4)}

Substitute the value of the x.


{\sf \longmapsto ((11)/(7)-2)/(3)= ((11)/(7)+1)/(4)}


{\sf \longmapsto ((11-14)/(7))/(3) = ((11+7)/(7))/(4)}


{\sf \longmapsto ((-3)/(7))/(3)= ((18)/(7))/(4)}

Cancel the number 7 on numerator Of LHS and RHS.


{\sf \longmapsto (-3)/(3) = (18)/(4)}

Write the fraction in lowest form by cancellation method.


{\sf \longmapsto (-3)/(3) = (9)/(2)}

So,


{\sf \longmapsto LHS ≠ RHS}

User Fareya
by
4.8k points