Answer:
B. The allele frequency of T is 0.84, and the allele frequency of t is 0.16.
Step-by-step explanation:
The Hardy-Weinberg equation is:
p2 + 2pq + q2 = 1
Where:
p = the frequency of the dominant allele
q = the frequency of the recessive allele
1 = the total number of alleles
Given that 16 individuals out of 100 are unable to taste PTC, we can calculate that the frequency of the recessive allele, q, is 0.16. We can then use the Hardy-Weinberg equation to solve for the frequency of the dominant allele, p:
p2 + 2pq + q2 = 1
p2 + 2p(0.16) + (0.16)2 = 1
p2 + 0.32p + 0.0256 = 1
p2 + 0.32p - 0.9144 = 0
(p + 0.32)(p - 2.84) = 0
p = -0.32 or p = 2.84
Since the allele frequencies must add up to 1, we know that p cannot equal -0.32. This leaves us with p = 2.84. Therefore, the allele frequency of the dominant allele is 2.84, and the allele frequency of the recessive allele is 0.16.