Answer:
Given the function:
![f(x) = (x+2)/(3x-4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pk8qu2wy81o0qpexcydw2yv7jtmj6po970.png)
Step 1: Replace f(x) by y;
![y= (x+2)/(3x-4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mb6v0knblqrecawn8i6fbaw4qvlb5dzwxe.png)
Step 2: Interchange the variables x and y.
![x= (y+2)/(3y-4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wx9dxfqkqw5ctjyoh4w3vahidqf4wnmd47.png)
Step 3: Solve for y in terms of x;
![x(3y-4) = y+2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jho7uv89uz3vv6jvgu445pdrh8ne7ta6kz.png)
Using distributive property:
![a\cdot (b+c) = a\cdot b+ a\cdot c](https://img.qammunity.org/2020/formulas/mathematics/high-school/yb5iui6ryaxn7bq504vqqvksk898sz02vq.png)
![3xy-4x = y+2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/morms6avfkidf97g8qkxri5drzopvtfsfn.png)
Add 4x to both sides we get;
![3xy= y+2+4x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xvl0yxroymd2lon7jq6820thovqoz1i2s0.png)
![3xy-y=2+4x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h6e7me9596frvdaik05gq38ve29q06uxwj.png)
![y(3x-1)=2+4x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ese7ffoekpppq5acvp5yer5djad1vzfmnl.png)
⇒
![y = (4x+2)/(3x-1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dk0k1hfs00zhploidk55n5sbw9tnpyr0ma.png)
Step 4: Replace y with
![f^(-1)(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tijlr5txetn9e2jzt0oij76xvsmzw1dvzv.png)
![f^(-1)(x) = (4x+2)/(3x-1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7f1oqd930zyn8719durn2c0bfi3h9bith5.png)
Therefore, the inverse operation of a given function is:
![f^(-1)(x) = (4x+2)/(3x-1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7f1oqd930zyn8719durn2c0bfi3h9bith5.png)