23.6k views
5 votes
Determine if the series is convergent or divergent 20-15+10-5....

a) convergent
b) divergent

User Pkeller
by
6.1k points

2 Answers

4 votes

Answer:

B

Explanation:

edg 2021

User Alexandr Subbotin
by
5.6k points
3 votes

Answer:

Option b is correct.

The series 20-15+10-5....is Divergent

Explanation:

Alternating series Test:


\sum_(n=1)^(\infty) (-1)^(n-1) (b_n) =b_1-b_2+b_3-........


b_n>0 satisfies:


  • b_(n+1) \leq b_n for all n

  • \lim_(n\rightarrow \infty) b_n = 0

Then the series converges,

otherwise diverges.

Given the series: 20-15+10-5....

This is a alternating series:


\sum_(n=1)^(\infty) (-1)^(n-1) (20-5(n-1))


b_n = (20-5(n-1))


b_(n+1) = (20-5(n+1-1)) = (20-5n)

using the alternating series test;


b_(n+1) \leq b_n for all n


\lim_(n\rightarrow \infty) b_n = \lim_(n\rightarrow \infty) (20-5(n-1)) = -\infty

⇒ the series diverges.

therefore, the given series i,e 20-15+10-5.... is divergent.

User XNargaHuntress
by
5.5k points