Recall the Pythagorean identity,
![\sin^2(\theta) + \cos^2(\theta) = 1](https://img.qammunity.org/2023/formulas/mathematics/college/7t2j63pd66jbvvbqn1gf3kqe3qdvax8zm6.png)
Since
belongs to Q3, we know both
and
are negative. Then
![\cos(\theta) = -√(1 - \sin^2(\theta)) = -\frac7{25}](https://img.qammunity.org/2023/formulas/mathematics/college/o1euto7jo48wjipnyhlha8chsjxcnwz2jh.png)
Recall the half-angle identities for sine and cosine,
![\sin^2\left(\frac\theta2\right) = \frac{1 - \cos(\theta)}2](https://img.qammunity.org/2023/formulas/mathematics/college/myji1ut6r15z5r1ejzrlz3sgw43sapq59o.png)
![\cos^2\left(\frac\theta2\right) = \frac{1 + \cos(\theta)}2](https://img.qammunity.org/2023/formulas/mathematics/college/12h3vmzm6f1yidhar36vsmuw6aamursr7q.png)
Then by definition of tangent,
![\tan^2\left(\frac\theta2\right) = (\sin^2\left(\frac\theta2\right))/(\cos^2\left(\frac\theta2\right)) = (1 - \cos(\theta))/(1 + \cos(\theta))](https://img.qammunity.org/2023/formulas/mathematics/college/zabkmec8eek4bhn9dllpjduoxd5gvy0xsb.png)
belonging to Q3 means
, or
, so that the half-angle belongs to Q2. Then
is positive and
is negative, so
is negative.
It follows that
![\tan\left(\frac\theta2\right) = -\sqrt{(1 - \cos(\theta))/(1 + \cos(\theta))} = \boxed{-\frac43}](https://img.qammunity.org/2023/formulas/mathematics/college/3t9280r0c77hkrh2l83slnz11kky9s1hkx.png)