95.6k views
5 votes
A supersonic airplane is flying horizontally at a speed of 2610 km/h.

1. What is the centripetal acceleration of the airplane, if it turns from North to East on a circular path with a radius of 80.5 km?
2. How much time does the turn take?
3. How much distance does the airplane cover during the turn?

2 Answers

12 votes

the calculated values are approximately:

- Centripetal Acceleration
(\(a_c\)): \(6.78 \, \text{m/s}^2\)

- Time of Turn
(\(t\)): \(698.77 \, \text{s}\)

- Distance Covered
(\(d\)): \(1985.13 \, \text{km}\)

Let's go through each part of the problem:

a. Centripetal Acceleration:

Given that the speed of the airplane v is
\(2720 \, \text{km/h}\) and the radius r is
\(84.0 \, \text{km}\), let's calculate the centripetal acceleration
(\(a_c\)).

First, convert the speed from kilometers per hour to meters per second:


\[ v = 2720 \, \text{km/h} * \frac{1000 \, \text{m}}{1 \, \text{km}} * \frac{1 \, \text{h}}{3600 \, \text{s}} \]\[ v = (2720 * 1000)/(3600) \, \text{m/s} \]

Now, substitute the values into the centripetal acceleration formula:


\[ a_c = (v^2)/(r) \]\[ a_c = (\left((2720 * 1000)/(3600)\right)^2)/(84 * 10^3) \]

Calculate
\(a_c\).


\[ v = (2720 * 1000)/(3600) \, \text{m/s} \]\[ a_c = (\left((2720 * 1000)/(3600)\right)^2)/(84 * 10^3) \]\[ a_c \approx ((755.56)^2)/(84 * 10^3) \]\[ a_c \approx (570004.94)/(84 * 10^3) \]\[ a_c \approx 6.78 \, \text{m/s}^2 \]

b. Time of Turn:

The time t taken for one complete revolution is given by the formula:


\[ t = (2 \pi r)/(v) \]

Substitute the known values into the formula:


\[ t = (2 \pi * 84 * 10^3)/((2720 * 1000)/(3600)) \]

Calculate t.


\[ t = (2 \pi * 84 * 10^3)/((2720 * 1000)/(3600)) \]\[ t \approx (2 * 3.1416 * 84 * 10^3)/((2720 * 1000)/(3600)) \]\[ t \approx (527885.76)/(755.56) \]\[ t \approx 698.77 \, \text{s} \]

c. Distance Covered:

The distance d covered during the turn is given by the formula:


\[ d = vt \]

Substitute the known values into the formula:


\[ d = \left((2720 * 1000)/(3600)\right) * (2 \pi * 84 * 10^3)/((2720 * 1000)/(3600)) \]

Calculate d.


\[ d = \left((2720 * 1000)/(3600)\right) * (2 \pi * 84 * 10^3)/((2720 * 1000)/(3600)) \]\[ d \approx (755.56 * 2 * 3.1416 * 84 * 10^3)/((2720 * 1000)/(3600)) \]\[ d \approx (1501664.66)/(755.56) \]\[ d \approx 1985.13 \, \text{km} \]

So, the calculated values are approximately:

- Centripetal Acceleration
(\(a_c\)): \(6.78 \, \text{m/s}^2\)

- Time of Turn
(\(t\)): \(698.77 \, \text{s}\)

- Distance Covered
(\(d\)): \(1985.13 \, \text{km}\)

User Seanf
by
5.2k points
6 votes

Answer:

Centripetal acceleration of this aircraft: approximately
6.52\; {\rm m \cdot s^(-2)}.

Distance covered during the turn: approximately
63.2\; {\rm km}.

Time required for the turn: approximately
0.0242\; \text{hours} (approximately
87.2\; {\rm s}.)

Step-by-step explanation:

Convert velocity and radius to standard units:


\begin{aligned}v &= 2610\; {\rm km \cdot h^(-1)} * \frac{1\; {\rm h}}{3600\; {\rm s}} * \frac{1000\; {\rm m}}{1\; {\rm km}} \\ &= 725\; {\rm m\cdot s^(-1)} \end{aligned}.


\begin{aligned} r = 80.5\; {\rm km} * \frac{1000\; {\rm m}}{1\; {\rm km}} = 8.05 * 10^(4)\; {\rm m}\end{aligned}.

Hence, the centripetal acceleration of this aircraft:


\begin{aligned} a &= (v^(2))/(r) \\ &= \frac{(725\; {\rm m\cdot s^(-1)})^(2) }{8.05 * 10^(4)\; {\rm m}} \\ &\approx 6.53\; {\rm m \cdot s^(-2)}\end{aligned}.

The trajectory of the turn is an arc with a radius of
r = 80.5\; {\rm km} and a central angle of
\theta = 90^(\circ) = (\pi / 4). The length of this arc would be:


\begin{aligned} s &= r\, \theta \\ &= 80.5\; {\rm km} * (\pi / 4) \\ &\approx 63.2\; {\rm km}\end{aligned}.

The time required to travel
63.2\; {\rm km} at a speed of
2610\; {\rm km \cdot h^(-1)} would be:


\begin{aligned}t &= (s)/(v) \\ &\approx \frac{63.2\; {\rm km}}{2610\; {\rm km \cdot h^(-1)}} \\ &\approx 0.0242\; {\rm h} \\ &\approx 0.0242 \; {\rm h} * \frac{3600\; {\rm s}}{1\; {\rm h}} \\ &\approx 87.2\; {\rm s} \end{aligned}.

User Sindrem
by
5.0k points