108k views
2 votes
Prove by mathematical induction that


cos\theta+cos3\theta+cos5\theta+...+cos(2n-1)\theta=(sin2n\theta)/(2sin\theta)
where sinθ≠0 for all positive integers n.

1 Answer

1 vote

For
n=1, on the left we have
\cos\theta, and on the right,


(\sin2\theta)/(2\sin\theta)=(2\sin\theta\cos\theta)/(2\sin\theta)=\cos\theta

(where we use the double angle identity:
\sin2\theta=2\sin\theta\cos\theta)

Suppose the relation holds for
n=k:


\displaystyle\sum_(n=1)^k\cos(2n-1)\theta=(\sin2k\theta)/(2\sin\theta)

Then for
n=k+1, the left side is


\displaystyle\sum_(n=1)^(k+1)\cos(2n-1)\theta=\sum_(n=1)^k\cos(2n-1)\theta+\cos(2k+1)\theta=(\sin2k\theta)/(2\sin\theta)+\cos(2k+1)\theta

So we want to show that


(\sin2k\theta)/(2\sin\theta)+\cos(2k+1)\theta=(\sin(2k+2)\theta)/(2\sin\theta)

On the left side, we can combine the fractions:


(\sin2k\theta+2\sin\theta\cos(2k+1)\theta)/(2\sin\theta)

Recall that


\cos(x+y)=\cos x\cos y-\sin x\sin y

so that we can write


(\sin2k\theta+2\sin\theta(\cos2k\theta\cos\theta-\sin2k\theta\sin\theta))/(2\sin\theta)


=(\sin2k\theta+\sin2\theta\cos2k\theta-2\sin2k\theta\sin^2\theta)/(2\sin\theta)


=(\sin2k\theta(1-2\sin^2\theta)+\sin2\theta\cos2k\theta)/(2\sin\theta)


=(\sin2k\theta\cos2\theta+\sin2\theta\cos2k\theta)/(2\sin\theta)

(another double angle identity:
\cos2\theta=\cos^2\theta-\sin^2\theta=1-2\sin^2\theta)

Then recall that


\sin(x+y)=\sin x\cos y+\sin y\cos x

which lets us consolidate the numerator to get what we wanted:


=(\sin(2k+2)\theta)/(2\sin\theta)

and the identity is established.

User Cosmin Atanasiu
by
8.2k points

Related questions

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories