218k views
3 votes
Can you help me with my homework

Can you help me with my homework-example-1
User KoalaZub
by
8.4k points

1 Answer

3 votes

Answer:

4. Option C (3a+2) inches

5. Extraneous solution x=-5/6 because we get for width and length negative values.

Solution: Value of x is 3

Length of the box: 5 ft

Width of the box: 4 ft

Explanation:

4. Area of a rectangle: A=12a^2-a-6 square inches

Width: w=4a-3

Length: l=?

A=w l

Replacing A by 12a^2-a-6 and w by 4a-3

12a^2-a-6 = (4a-3) l

Solving for l: Dividing both sides of the equation by 4a-3:

(12a^2-a-6) / (4a-3) = (4a-3) l / (4a-3)

Simplifying:

(12a^2-a-6) / (4a-3) = l

l = (12a^2-a-6) / (4a-3)

Factoring the numerator:

12a^2-a-6 = (4a-3)(3a+2)

Let's check it:

(4a-3)(3a+2)=4a(3a)+4a(2)-3(3a)-3(2)=12a^2+8a-9a-6→(4a-3)(3a+2)=12a^2-a-6

Replacing the numerator:

l = (4a-3)(3a+2) / (4a-3)

Simplifying:

l = (3a+2) inches


5. Length: l=(3x-5) ft

Width: w=(2x-1) ft

Height: h=2 ft

Volumen of the box: V=40 ft^3

x=?

Length: l=?

Width: w=?

V = l w h

Replacing the given:

40 ft^3 = (3x-5) ft (2x-1) ft 2 ft

40 ft^3 = 2 (3x-5)(2x-1) ft^3

40=2(3x-5)(2x-1)

Dividing both sides of the equation by 2:

40/2=2(3x-5)(2x-1)/2

Simplifying:

20=(3x-5)(2x-1)

Eliminating the parentheses on the right side of the equation applying the distributive property:

20=3x(2x)+3x(-1)-5(2x)-5(-1)

20=6x^2-3x-10x+5

Adding like terms:

20=6x^2-13x+5

Equaling to zero: Subtracting 20 from both sides of the equation:

20-20=6x^2-13x+5-20

0=6x^2-13x-15

6x^2-13x-15=0

ax^2+bx+c=0; a=6, b=-13, c=-15

Using the quadratic formula:

x=[-b+-sqrt(b^2-4ac)]/(2a)

x=[-(-13)+-sqrt((-13)^2-4(6)(-15))]/(2(6))

x=[13+-sqrt(169+360)]/12

x=[13+-sqrt(529)]/12

x=[13+-23]/12

x1=(13-23)/12=(-10)/12=-10/12=-(10/2)/(12/2)→x1=-5/6

x2=(13+23)/12=36/12→x2=3


With x=-5/6

l=(3x-5) ft

l=(3(-5/6)-5) ft

l=(-5/2-5) ft

l=-(5/2+5) ft

l=-(5+2(5))/2 ft

l=-(5+10)/2 ft

l=-15/2 ft < 0. The length cannot be a negative number then x=-5/6 is a extraneous solution.

w=(2x-1) ft

w=(2(-5/6)-1) ft

w=(-5/3-1) ft

w=-(5/3+1) ft

w=-(5+3(1))/3 ft

w=-(5+3)/3 ft

w=-8/3 ft <0. The width cannot be a negative number then x=-5/6 is a extraneous solution.


With x=3

l=(3x-5) ft

l=(3(3)-5) ft

l=(9-5) ft

l=4 ft

w=(2x-1) ft

w=(2(3)-1) ft

w=(6-1) ft

w=5 ft

and h=2 ft

Let's check the volume

V= w l h

V=(5 ft)(4 ft)(2 ft)

V=40 ft^3 Correct

User Comocomocomocomo
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories