46.3k views
3 votes
Given: P is the midpoint of AB

Q is the midpoint of AC

Prove: BC = 2PQ

1 Answer

3 votes

Explanation:

Since we have given that

Given : In triangle ABC, P is the mid point of AB, and Q is the midpoint of AC.

To prove : BC=2PQ

Construction : Join PQ such that PQ║BC.

Proof: Since P and Q are the midpoints of AB and AC respectively.

Using Mid point theorem, it states that the line segments joining the midpoints is parallel to the third side and equal to half of the third side.


PQ=(1)/(2)BC\\\\2BC=PQ

Hence proved.


User Darius Miliauskas
by
5.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.