Answer:
1.
![y=(-3)/(5)](https://img.qammunity.org/2020/formulas/mathematics/high-school/esvdhadp5ijhm4al65vx40gl6mrzritz6z.png)
2.
![x=(-√(5))/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/d68cnjb58eaib22jzif9qyebcnqrqatx0u.png)
Explanation:
Ques 1: We are given that the point
lies on a unit circle and is in the 3rd quadrant.
The equation of the unit circle is
.
Substituting the values, we get,
![x^(2)+y^(2)=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/68nduu6cino9dtakgffqbtqbenu5pfyjci.png)
⇒
![((-4)/(5))^(2)+y^(2)=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/xj4pbwqalj6g1y7bt6855ikpz94s3iemu6.png)
⇒
![y^(2)=1-((-4)/(5))^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/sukkebk9uc7t7opop12x34zaxjaanxw07t.png)
⇒
![y^(2)=1-(16)/(25)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7x9ry2rhattt1hk166ac9p4j4k39v017nj.png)
⇒
![y^(2)=(25-16)/(25)](https://img.qammunity.org/2020/formulas/mathematics/high-school/why8vruv3ypg6cb5twqys78a02a3qat8gy.png)
⇒
![y^(2)=(9)/(25)](https://img.qammunity.org/2020/formulas/mathematics/high-school/xx4hbhqdbze4z3lvrh08a7p1d3bg238chf.png)
⇒
![y=\pm (3)/(5)](https://img.qammunity.org/2020/formulas/mathematics/high-school/jd42fm91u0wgwxotvrzpoz20bv6gvfc1di.png)
Since, the point P lies in the 3rd quadrant i.e. the value of y will be negative.
So,
.
Ques 2: We are given that the point
lies on a unit circle and is in the 2nd quadrant.
The equation of the unit circle is
.
Substituting the values, we get,
![x^(2)+y^(2)=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/68nduu6cino9dtakgffqbtqbenu5pfyjci.png)
⇒
![x^(2)+((2)/(3))^(2)=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/4ek01x55wphlxgsd3miawl0p59h5frqjbd.png)
⇒
![x^(2)=1-((2)/(3))^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ynodhwm710i7hyfn0reol93geh2nq48kz2.png)
⇒
![x^(2)=1-(4)/(9)](https://img.qammunity.org/2020/formulas/mathematics/high-school/xhn7y4air1q2w8vbb2hms16mo1x30mf0tx.png)
⇒
![x^(2)=(9-4)/(9)](https://img.qammunity.org/2020/formulas/mathematics/high-school/l0847064qwwqnv42p494sa3g3edcltjdfs.png)
⇒
![x^(2)=(5)/(9)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ijgkzz8rc18yb349dq9dh3e2wxyrme0u3l.png)
⇒
![x=\pm (√(5))/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/np7qink2jrtkk32o9v1ftrmrgxopauz58y.png)
Since, the point P lies in the 2nd quadrant i.e. the value of x will be negative.
So,
![x=(-√(5))/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/d68cnjb58eaib22jzif9qyebcnqrqatx0u.png)