Answer:
![\left[ (4)/(3),4 \right]](https://img.qammunity.org/2023/formulas/mathematics/high-school/2pymrrtbywawxi5247k0z5jlk093r38tkz.png)
Explanation:
Inequality 1
![3y-13\geq -9](https://img.qammunity.org/2023/formulas/mathematics/high-school/3mrzr8o8jspdjr93c3wkzv95c5gqm8cnu7.png)
Add 13 to both sides:
![\implies 3y-13+13\geq -9+13](https://img.qammunity.org/2023/formulas/mathematics/high-school/ar4mcu6lxlpds0e064639bqkhhkxbnuoal.png)
![\implies 3y\geq 4](https://img.qammunity.org/2023/formulas/mathematics/high-school/zxorpr323aonqd6v1hzg9pgsz4v8292xrx.png)
Divide both sides by 3:
![\implies (3y)/(3)\geq (4)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/cpp2d8lr0arkf6nuxuf3pkfptsoiy0pp15.png)
![\implies y \geq (4)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/d7pzu1bj4kr889cns999xng7dwm5bu8aw5.png)
Therefore, y is equal to or bigger than 4/3.
Inequality 2
![3y-13\leq -1](https://img.qammunity.org/2023/formulas/mathematics/high-school/qtz443ru6av5lpm2qs9ngb1cx220h881rp.png)
Add 13 to both sides:
![\implies 3y-13+13\leq -1+13](https://img.qammunity.org/2023/formulas/mathematics/high-school/ozap5fspzewpzconke2iwjvjj0an12t50i.png)
![\implies 3y\leq 12](https://img.qammunity.org/2023/formulas/mathematics/high-school/3mt21pwch1t86vsguckpp7el47zkl3mh3a.png)
Divide both sides by 3:
![\implies (3y)/(3)\leq (12)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/u1go4miuwuzya0xjyrvkgb03h6j26hbdjc.png)
![\implies y\leq 4](https://img.qammunity.org/2023/formulas/mathematics/high-school/vw4935tjqv36v9aaz0gy6fuer4y3bsjmbq.png)
Therefore, y is equal to or smaller than 4.
Therefore, the solution to the inequalities in interval notation is:
![\left[ (4)/(3),4 \right]](https://img.qammunity.org/2023/formulas/mathematics/high-school/2pymrrtbywawxi5247k0z5jlk093r38tkz.png)