ANSWER
![{ \sin ( \theta) } = -(3)/(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/myy2a95ccp42u86h95uyy544pttw87k1a7.png)
EXPLANATION
The cosine function is an even function.
It has the following property.
![\cos( - \theta) = \cos( \theta)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3w3wicb7de26vj7v9p1grogd1l96hvxceu.png)
This implied that if
![\cos( - \theta) = (4)/(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/brimc574qf4ayeddg0tnyhl36xvhn3vtga.png)
Then,
![\cos( \theta) = (4)/(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a7kjh9mtoh61n8lk0clnsnap8m2vtx7j54.png)
Using the Pythagorean identity,
![{ \cos ^(2) ( \theta) } + { \sin ^(2) ( \theta) } = 1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6w9s808eyvvr41b2vooeunnic62olalgfy.png)
We substitute the value of
![\cos( \theta) = (4)/(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a7kjh9mtoh61n8lk0clnsnap8m2vtx7j54.png)
into the equation to get,
![( { (4)/(5) })^(2) + { \sin ^(2) ( \theta) } = 1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pvwxvotnf8wwrrzdzz5ba1y4fbmwjcamtk.png)
![(16)/(25)+ { \sin ^(2) ( \theta) } = 1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qn8ghf9hurqgel3k1a0vhyl008a8udxiu0.png)
![{ \sin ^(2) ( \theta) } = 1 - (16)/(25)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k7ztbz755dnuktsaon5v22qgovnnrcbm2h.png)
![{ \sin ^(2) ( \theta) } = (9)/(25)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/epyj4csak2rp45p6wkfklsa5cyrty27xc0.png)
We take square root of both sides to get,
![{ \sin ( \theta) } = \pm \: \sqrt{ (9)/(25) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rpzuqe4usbc5y7d5ufley2im0w0f0xrwrl.png)
![{ \sin ( \theta) } = \pm (3)/(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h4yaynown9q0jrmtpfg7ondmf53s706zei.png)
It was given that,
![\tan( \theta) \: > \: 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lyzn7ussszt5gm35phdv48d2xrfcmcqlvr.png)
This implies that the angle is in the first quadrant. That is the only quadrant where both the cosine and the tangent ratios are positive.
Hence,
![{ \sin ( \theta) } = (3)/(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tsyobqlq31eb4pq0zw7zomtwyb2pqs3g8s.png)
.
But the sine function is an odd function.
This means that,
![\sin( - \theta) =-\sin( \theta)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f3eg5tphs3bfj8x3ahnr08joqttlh7q6xt.png)
Therefore,
![{ \sin ( -\theta) } =- (3)/(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ywxdgybmjhcekgu0dxckg89zljkiy5jwmj.png)
.