Answer:
The values are evaluated below.
Explanation:
Given function is
![-x^4-7x^3-12x^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/te4rea6qhz4dswlx34k3rnxfllc8tadrp8.png)
We have to find the domain, range, rel max, rel min, end behaviour, increasing or decreasing intervals and zeros of polynomial.
Domain:
The domain of a function is the set of all possible values of x for the given function.
Here domain is set of all real numbers R.
Range:
The range is the resulting y-values we get after substituting all the possible x-values.From the graph we see that
The range is
![-\infty<y<3.124](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vlke50z7859065bn6vo7xjlgpod7qvyn0l.png)
Relative maxima and minima of a function, are the largest and smallest value of the function on an entire domain of function.
Relative max of
is 0 at x=0
and
at
![x=(-21)/(8)-(\sqrt57)/(8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ofdcuild5k8lnzpimtzrilwvndx8igyx0a.png)
Relative min is
at
![x=(-21)/(8)+(\sqrt57)/(8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rny7jxqqp5gk2v217txn867z5hl8kze95j.png)
From the graph we see that
End behaviour is As
![\\x->\infty, f(x)->-\infty\\x->-\infty, f(x)->-\infty\\](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sukaxdu1bn52vwpu3uz7n0qu4nt4nw3az2.png)
Increasing intervals and decreasing intervals are
Increasing:
![(1)/(8)(\sqrt57-21)<x<(1)/(8)(-21-\sqrt57)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9n0cgvdojwyg9hyy046nh0qwmix6nhkcps.png)
Decreasing:
Zeroes are :
![-x^4-7x^3-12x^2=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5kzf6qum3nfxfbdr6noooac36jlm2s4s5j.png)
⇒
![(-x^2)(x^2+7x+12)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/x4u9zn0hen08sosw6o420eadpeznbybq2n.png)
⇒
![(-x^2)(x+3)(x+4)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1f28cmzxk7l3zr2faxrqkmf2r9m7yufl54.png)
Hence, zeroes are 0, 0, -3, -4