Explanation:
IR = 9√3
E = 60°
I = 30°
R = 90°
• Find ER.
ER/sin(I) = IR/sin(E)
ER/sin(30°) = 9√3/sin(60°)
ER/(1/2) = 9√3/(1/2 √3)
ER/(1/2) = (9√3 . 2)/√3
ER/(1/2) = 18√3/√3
ER/(1/2) = 18 → IR/sin(E)
ER = 18 . 1/2
ER = 9 is the answer
• Find IE (There are 2 ways).
First, using a Sinus Rule.
IE/sin(R) = IR/sin(E)
IE/sin(90°) = 9√3/sin(60°)
IE/1 = 9√3/(1/2 √3)
IE = (9√3 . 2)/√3
IE = (18√3)/√3
IE = 18 is the answer
Second, using a Pythagoras Theorem.
IE = √(IR² + ER²)
IE = √((9√3)² + 9²)
IE = √(81.3 + 81)
IE = √(243 + 81)
IE = √324
IE = 18 is the answer